

 Navigation

 	
 index

 	
 next |

 	sfm 0.6.1 documentation

Social Feed Manager (SFM) documentation

Social Feed Manager is open source software for libraries, archives, cultural heritage institutions and research organizations. It empowers those communities’ researchers, faculty, students, and archivists to define and create collections of data from social media platforms. Social Feed Manager will harvest from Twitter, Tumblr, Flickr, and Sina Weibo and is extensible for other platforms. In addition to collecting data from those platforms’ APIs, it will collect linked web pages and media.

This site provides documentation for installation and usage of SFM. See the Social Feed Manager project site [http://gwu-libraries.github.io/sfm-ui/] for full information about the project’s objectives, roadmap, and updates.

Contents:

	Installation and configuration
	Overview

	Configuration

	Local installation

	Amazon EC2 installation

	Authentication

	API Credentials
	Managing credentials

	Platform specifics

	Processing
	Tools

	Approaches

	Development
	Setting up a development environment

	Development tips

	Docker tips

	Docker
	Installing Docker

	Helpful commands

	Scaling up with Docker

	Writing a harvester
	Requirements

	Suggestions

	Notes

	Messaging
	RabbitMQ

	Publishers/consumers

	Exchange

	Queues

	Messaging Specification
	Introduction

	General

	Harvesting social media content

	Exporting social media content

Indices and tables

	Index

	Module Index

	Search Page

Funding history

	Development of this project has been supported by a grant (#NARDI-14-50017-14) from the National Historical Publications & Records Commission [http://www.archives.gov/nhprc/] to George Washington University Libraries from 2014-2017.

	Development of the Sina Weibo harvester is supported by a grant from the Council on East Asian Libraries [http://www.eastasianlib.org/].

	
	Prior development of SFM under the previous repository [https://github.com/gwu-libraries/social-feed-manager]

	was supported by a grant (#LG-46-13-0257-13) from the Institute of Museum and Library Services [http://www.imls.gov/]
to George Washington University Libraries from 2013-2014.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 0.6.1 documentation

Installation and configuration

Overview

The supported approach for deploying SFM is Docker containers.

Each SFM service will provide images for the containers needed to run the service
(in the form of Dockerfile s). These images will be published to Docker Hub [https://hub.docker.com/].
GWU created images will be part of the GWUL organization [https://hub.docker.com/u/gwul]
and be prefixed with sfm-.

sfm-docker [https://github.com/gwu-libraries/sfm-docker] provides the necessary
docker-compose.yml files to compose the services into a complete instance of SFM.

For a container, there may be multiple flavors of the container. In particular,
there may be the following:

	development: The code for the service is outside the container and linked into
the container as a shared volume. This supports development with a running instance
of the service.

	master: The container contains the master branch of the code at the time the
image is built.

	release: The container contains a release of the code. There will be a
separate image for each release.

For more information, see Docker.

SFM can be deployed without Docker. The various ``Dockerfile``s should provide
reasonable guidance on how to accomplish this.

Configuration

	Passwords are kept in secrets.env. A template for this file (example.secrets.env) is provided.

	Debug mode for sfm-ui is controlled by the DEBUG environment variable in docker-compose.yml.
If setting DEBUG to false, the SFM_HOST environment variable must be provided with the host.
See the Django documentation [https://docs.djangoproject.com/en/1.8/ref/settings/#allowed-hosts]
for ALLOWED_HOSTS.

	The default timezone is Eastern Standard Time (EST). To select a different timezone, change TZ=EST in
docker-compose.yml.

	Email is configured by providing the SFM_HOST, SFM_SMTP_HOST, SFM_EMAIL_USER, and SFM_EMAIL_PASSWORD
environment variables. SFM_HOST is used to determine the host name when constructing links contained in the emails.

	Application credentials for social media APIs are configured by providing the TWITTER_CONSUMER_KEY,
TWITTER_CONSUMER_SECRET, WEIBO_API_KEY, and/or WEIBO_API_SECRET. For more information, see API Credentials.

	The data volume strategy [https://docs.docker.com/engine/userguide/dockervolumes/#creating-and-mounting-a-data-volume-container]
is used to manage the volumes that store SFM’s data. By default, normal Docker volumes are used; to use
a host volume instead, add the host directory to the volumes field. This will allow you to access the
data outside of Docker. For example:

sfmdata:
 image: ubuntu:14.04
 command: /bin/true
 volumes:
 - /myhost/data:/sfm-data

Local installation

Installing locally required Docker and Docker-Compose. See Installing Docker.

	Either clone this repository:

git clone git@github.com:gwu-libraries/sfm-docker.git

or just download docker-compose.yml and example.secrets.env:

curl -L https://github.com/gwu-libraries/sfm-docker/raw/master/master.docker-compose.yml > docker-compose.yml
curl -L https://github.com/gwu-libraries/sfm-docker/raw/master/example.secrets.env > secrets.env

	Put real secrets in secrets.env.

	Bring up the containers:

docker-compose up -d

Amazon EC2 installation

To launch an Amazon EC2 instance running SFM, follow the normal procedure for launching an instance.
In Step 3: Configure Instance Details, under Advanced Details paste the following in
user details and modify as appropriate:

#cloud-config
repo_update: true
repo_upgrade: all

packages:
 - python-pip

runcmd:
 - curl -sSL https://get.docker.com/ | sh
 - usermod -aG docker ubuntu
 - pip install -U docker-compose
 - mkdir /sfm-data
This brings up master. To bring up a specific version, replace master with the
version number, e.g., 0.6.0.
 - curl -L https://github.com/gwu-libraries/sfm-docker/raw/master/master.docker-compose.yml > docker-compose.yml
 - curl -L https://github.com/gwu-libraries/sfm-docker/raw/master/example.secrets.env > secrets.env
Set secrets below. Secrets that are not commented out are required.
Secrets that are commented out are not required. To include, remove the #.
Don't forget to escape $ as \$.
The password used for logging into the Rabbit Admin. Username is sfm_user.
 - echo RABBITMQ_DEFAULT_PASS=password >> secrets.env
Postgres password.
 - echo POSTGRES_PASSWORD=password >> secrets.env
The password for the admin account for SFM UI. Username is sfmadmin.
 - echo SFM_SITE_ADMIN_PASSWORD=password >> secrets.env
The account used to send email via SMTP from SFM UI.
- echo SFM_EMAIL_USER=justinlittman@email.gwu.edu >> secrets.env
- echo SFM_EMAIL_PASSWORD=password >> secrets.env
The password used to log into the Heritrix UI. Username is sfm_user.
 - echo HERITRIX_PASSWORD=password >> secrets.env
API keys for allowing users to connect to social media platform APIs.
If not provided, credentials can still be provided in SFM UI.
- echo TWITTER_CONSUMER_KEY=EHdoeW7ksBgflP5nUalEfhao >> secrets.env
- echo TWITTER_CONSUMER_SECRET=ZtUemftBkf2cEmaqiyW2Ddihu9FPAiLebuMOmqN0jeQtXeAlen >> secrets.env
- echo WEIBO_API_KEY=1313340598 >> secrets.env
- echo WEIBO_API_SECRET=68ae6a497f2f6eac07ec14bf7c0e0fa52 >> secrets.env
Values must be provided for all of the following.
HERITRIX_CONTACT_URL is included in the HTTP request when harvesting web
resources with Heritrix.
 - export HERITRIX_CONTACT_URL=http://library.gwu.edu
The following are optional.
The SMTP server used to send email.
 - export SMTP_HOST=smtp.gmail.com
The email address of the admin account for SFM UI.
 - export SITE_ADMIN_EMAIL=nowhere@example.com
The time zone.
 - export TZ=EST
The host name of the server.
 - export HOST=`curl http://169.254.169.254/latest/meta-data/public-hostname`
 - sed -i 's/\/sfm-data/"\/sfm-data:\/sfm-data"/' docker-compose.yml
 - sed -i "s/HERITRIX_CONTACT_URL=http:\/\/library.gwu.edu/HERITRIX_CONTACT_URL=${HERITRIX_CONTACT_URL}/" docker-compose.yml
 - sed -i "s/SFM_SMTP_HOST=smtp.gmail.com/SFM_SMTP_HOST=${SMTP_HOST}/" docker-compose.yml
 - sed -i "s/SFM_SITE_ADMIN_EMAIL=nowhere@example.com/SFM_SITE_ADMIN_EMAIL=${SITE_ADMIN_EMAIL}/" docker-compose.yml
 - sed -i "s/TZ=EST/TZ=${TZ}/g" docker-compose.yml
 - sed -i "s/SFM_HOST=sfm.gwu.edu:8080/SFM_HOST=${HOST}/" docker-compose.yml
 - docker-compose up -d

When the instance is launched, SFM will be installed and started.

Note the following:

	Starting up the EC2 instance will take several minutes.

	This has been tested with Ubuntu Server 14.04 LTS, but may work with other AMI types.

	We don’t have recommendations for sizing, but providing multiple processors even for
testing/experimentation.

	If you need to make additional changes to your docker-compose.yml, you can ssh into the EC2 instance
and make changes. docker-compose.yml and secrets.env will be in the default user’s
home directory.

	Make sure to configure a security group that exposes the proper ports. To see which
ports are used by which services, see master.docker-compose.yml [https://github.com/gwu-libraries/sfm-docker/blob/master/master.docker-compose.yml].

	To learn more about configuring EC2 instances with user data, see the AWS user guide [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html].

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 0.6.1 documentation

Authentication

Social Feed Manager allows users to self-sign up for accounts.
Those accounts are stored and managed by SFM. Future versions of SFM will
support authentication against external systems, e.g., Shibboleth.

By default, a group is created for each user and the user is placed in
group. To create additional groups and modify group membership use
the Admin interface.

In general, users and groups can be administered from the Admin interface.

The current version of SFM is not very secure. Future versions of SFM
will more tightly restrict what actions users can perform and what they can
view. In the meantime, it is encouraged to take other measures to secure
SFM such as restricting access to the IP range of your institution.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 0.6.1 documentation

API Credentials

Accessing the APIs of social media platforms requires credentials for authentication
(also knows as API keys). Social Feed Manager supports managing those credentials.

Most API credentials have two parts: an application credential and a user credential.
(Flickr is the exception – only an application credential is necessary.)

It is important to understand how credentials/authentication effect what API methods can be
invoked and rate limits. For more information, consult the documentation for each
social media platform’s API.

Managing credentials

SFM supports two approaches to managing credentials: adding credentials and connecting
credentials. Both of these options are available from the Credentials page.

Adding credentials

For this approach, a user gets the application and/or user credential from the social
media platform and provide them to SFM by completing a form. More information on getting
credentials is below.

Connecting credentials

For this approach, SFM is configured with the application credentials for the social
media platform. The user credentials are obtained by the user being redirected to the social
media website to give permission to SFM to access her account.

SFM is configured with the application credentials in the docker-compose.yml. If additional
management is necessary, it can be performed using the Social Accounts section of the Admin
interface.

This is the easiest approach for users. Configuring application credentials is encouraged.

Platform specifics

Twitter

Twitter credentials can be obtained from https://apps.twitter.com/.

Weibo

For instructions on obtaining Weibo credentials, see this guide [http://gwu-libraries.github.io/sfm-ui/posts/2016-04-26-weibo-api-guide].

To use the connecting credentials approach for Weibo, the redirect URL must match
the application’s actual URL and use port 80.

Flickr

Flickr credentials can be obtained from https://www.flickr.com/services/api/keys/.

Flickr does not require user credentials.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 0.6.1 documentation

Processing

Your social media data can be used in a processing/analysis pipeline. SFM provides several
tools and approaches to support this.

Tools

Warc iterators

A warc iterator tool provides an iterator to the social media data contained in WARC files. When
used from the commandline, it writes out the social items one at a time to standard out.
(Think of this as cat-ing a line-oriented JSON file. It is also equivalent to the output of
Twarc.)

Each social media type has a separate warc iterator tool. For example, twitter_rest_warc_iter.py
extracts tweets recorded from the Twitter REST API. For example:

root@0ac9caaf7e72:/sfm-data# twitter_rest_warc_iter.py
usage: twitter_rest_warc_iter.py [-h] [--pretty] [--dedupe]
 [--print-item-type]
 filepaths [filepaths ...]

Warc iterator tools can also be used as a library.

Find Warcs

find_warcs.py helps put together a list of WARC files to be processed by other tools, e.g.,
warc iterator tools. (It gets the list of WARC files by querying the SFM API.)

Here is arguments it accepts:

root@0ac9caaf7e72:/sfm-data# find_warcs.py
usage: find_warcs.py [-h] [--include-web] [--harvest-start HARVEST_START]
 [--harvest-end HARVEST_END] [--api-base-url API_BASE_URL]
 [--debug [DEBUG]]
 collection [collection ...]

For example, to get a list of the WARC files in a particular collection, provide some part of
the collection id:

root@0ac9caaf7e72:/sfm-data# find_warcs.py 4f4d1
/sfm-data/collections/b06d164c632d405294d3c17584f03278/4f4d1a6677f34d539bbd8486e22de33b/2016/05/04/14/515dab00c05740f487e095773cce8ab1-20160504143638715-00000-47-88e5bc8a36a5-8000.warc.gz

(In this case there is only one WARC file. If there was more than one, it would be space separated.)

The collection id can be found from the SFM UI.

Note that if you are running find_warcs.py from outside a Docker environment, you will need
to supply --api-base-url.

Approaches

Processing in container

To bootstrap processing, a processing image is provided. A container instantiated from this
image is Ubuntu 14.04 and pre-installed with the warc iterator tools, find_warcs.py, jq, Twarc
(for access to the Twarc utilities). It will also have access to the data from /sfm-data/collections.

To instantiate:

docker run -it --rm --link=docker_sfmapp_1:api --volumes-from=docker_sfmdata_1 gwul/sfm-processing:0.3.0

The arguments will need to be adjusted depending on your Docker environment.

You will then be provided with a bash shell inside the container from which you can execute commands:

root@0ac9caaf7e72:/sfm-data# find_warcs.py 4f4d1 | xargs twitter_rest_warc_iter.py | python /opt/twarc/utils/wordcloud.py

Processing locally

In a typical Docker configuration, the data directory will be linked into the Docker environment.
This means that the data is available both inside and outside the Docker environment. Given this,
processing can be performed locally (i.e., outside of Docker).

The various tools can be installed locally:

GLSS-F0G5RP:tmp justinlittman$ virtualenv ENV
GLSS-F0G5RP:tmp justinlittman$ source ENV/bin/activate
(ENV)GLSS-F0G5RP:tmp justinlittman$ pip install git+https://github.com/gwu-libraries/sfm-utils.git
(ENV)GLSS-F0G5RP:tmp justinlittman$ pip install git+https://github.com/gwu-libraries/sfm-twitter-harvester.git
(ENV)GLSS-F0G5RP:tmp justinlittman$ twitter_rest_warc_iter.py
usage: twitter_rest_warc_iter.py [-h] [--pretty] [--dedupe]
 [--print-item-type]
 filepaths [filepaths ...]
twitter_rest_warc_iter.py: error: too few arguments

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 0.6.1 documentation

Development

Setting up a development environment

SFM is composed of a number of components. Development can be performed on each of the
components separately. The following describes setting up an development environment
for a component.

Step 1: Pick a development configuration

For SFM development, it is recommended to run components within a Docker environment
(instead of directly in your OS, not in Docker). Docker runs natively (and cleanly) on Ubuntu; on OS X
Docker requires Docker Toolbox.

Since Docker can’t run natively on OS X, Docker Toolbox
runs it inside a VirtualBox VM, which is largely transparent to the user. Note that GWU’s
configuration of the Cisco AnyConnect VPN client breaks Docker Toolbox. You can work
around this with vpn_fix.sh [https://gist.github.com/arrogantrobot/120e9895db1a97038d3a],
but this is less than optimal.

Depending on your development preferences and the OS you development on, you may want to
consider one of the following configurations:

	Develop locally and run Docker locally: Optimal if using an IDE and not using OS X/
Cisco AnyConnect.

	Both develop and run Docker in an Ubuntu VM. The VM can be local (e.g., in VMWare Fusion)
or remote Ubuntu VM (e.g., a WRLC or AWS VM): Optimal if using a text editor.

	Develop locally and run Docker in a local VM with the local code shared into the VM:
Optimal if using an IDE.

Step 2: Install Docker and Docker Compose

See See Installing Docker.

Step 3: Clone the component’s repo

For example:

git clone https://github.com/gwu-libraries/sfm-ui.git

Step 4: Configure docker-compose.yml

Each SFM component should provide a development Docker image and an example dev.docker-compose.yml
file (in the docker/ directory).

The development Docker image will run the component using code that is shared with container.
That is, the code is made available at container run time, rather than build time (as it is
for master or production images). This allows you to change code and have it affect the
running component if the component (e.g., a Django application) is aware of code changes. If
the component is not aware of code changes, you will need to restart the container to get the
changes (docker kill <container name> followed by docker-compose up -d).

The development docker-compose.yml will bring up a container running the component and containers
for any additional components that the component depends on (e.g., a RabbitMQ instance). Copy
dev.docker-compose.yml to docker-compose.yml and update it as necessary. At the very least,
you will need to change the volumes link to point to your code:

volumes:
 - "<path of your code>:/opt/sfm-ui"

You may also need to change the defaults for exposed ports to ports that are available in
your environment.

Step 5: Run the code

cd docker
docker-compose up -d

For additional Docker and Docker-Compose commands, see below.

Development tips

Admin user accounts

When running a development docker-compose.yml, each component should automatically
create any necessary admin accounts (e.g., a django admin for SFM UI). Check dev.docker-compose.yml
for the username/passwords for those accounts.

RabbitMQ management console

The RabbitMQ management console can be used to monitor the exchange of messages. In particular, use it
to monitor the messages that a component sends, create a new queue, bind that queue to sfm_exchange
using an appropriate routing key, and then retrieve messages from the queue.

The RabbitMQ management console can also be used to send messages to the exchange so that
they can be consumed by a component. (The exchange used by SFM is named sfm_exchange.)

For more information on the RabbitMQ management console, see RabbitMQ.

Blocked ports

When running on a remote VM, some ports (e.g., 15672 used by the RabbitMQ management console) may
be blocked. SSH port forwarding [https://help.ubuntu.com/community/SSH/OpenSSH/PortForwarding]
can help make those ports available.

Django logs

Django logs for SFM UI are written to the Apache logs. In the docker environment, the level of various
loggers can be set from environment variables. For example, setting SFM_APSCHEDULER_LOG to DEBUG
in the docker-compose.yml will turn on debug logging for the apscheduler logger. The logger for
the SFM UI application is called ui and is controlled by the SFM_UI_LOG environment variable.

Apache logs

In the SFM UI container, Apache logs are sent to stdout/stderr which means they can be viewed with
docker-compose logs or docker logs <container name or id>.

Initial data

The development and master docker images for SFM UI contain some initial data. This includes a user (“testuser”,
with password “password”). For the latest initial data, see fixtures.json. For more information on fixtures,
see the Django docs [https://docs.djangoproject.com/en/1.8/howto/initial-data/].

Runserver

There are two flavors of the the development docker image for SFM UI. gwul/sfm-ui:dev runs SFM UI with
Apache, just as it will in production. gwul/sfm-ui:dev-runserver runs SFM UI with runserver [https://docs.djangoproject.com/en/1.8/ref/django-admin/#runserver-port-or-address-port],
which dynamically reloads changed Python code. To switch between them, change the image field in your
docker-compose.yml.

Job schedule intervals

To assist with testing and development, a 5 minute interval can be added by setting SFM_FIVE_MINUTE_SCHEDULE to
True in the docker-compose.yml.

Docker tips

Building vs. pulling

Containers are created from images. Images are either built locally or pre-built and pulled from
Docker Hub [https://hub.docker.com/]. In both cases, images are created based on the docker build (i.e., the
Dockerfile and other files in the same directory as the Dockerfile).

In a docker-compose.yml, pulled images will be identified by the image field, e.g., image: gwul/sfm-ui:dev. Built images
will be identified by the build field, e.g., build: app-dev.

In general, you will want to use pulled images. These are automatically built when changes are made to the Github repos.
You should periodically execute docker-compose pull to make sure you have the latest images.

You may want to build your own image if your development requires a change to the docker build (e.g., you modify
fixtures.json).

Killing, removing, and building in development

Killing a container will cause the process in the container to be stopped. Running the container again will cause
process to be re-started. Generally, you will kill and run a development container to get the process to be run
with changes you’ve made to the code.

Removing a container will delete all of the container’s data. During development, you will remove a container to make
sure you are working with a clean container.

Building a container creates a new image based on the Dockerfile. For a development image, you only need to build
when making changes to the docker build.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 0.6.1 documentation

Docker

This page contains information about Docker that is useful for installation,
administration, and development.

Installing Docker

Docker Engine [https://www.docker.com/] and Docker Compose [https://docs.docker.com/compose/]

On OS X:

	Install the Docker Toolbox [https://docs.docker.com/installation/mac/].

	Be aware that Docker is not running natively on OS X, but rather in a
VirtualBox VM.

On Ubuntu:

	If you have difficulties with the apt install, try the pip install.

	The docker group is automatically created. Adding your user to the docker
group [https://docs.docker.com/v1.8/installation/ubuntulinux/#create-a-docker-group]
avoids having to use sudo to run docker commands. Note that depending on how
users/groups are set up, you may need to manually need to add your user to the
group in /etc/group.

Helpful commands

	docker-compose up -d

	Bring up all of the containers specified in the docker-compose.yml file. If a container has not yet been pulled,
it will be pulled. If a container has not yet been built it will be built. If a container has been stopped (“killed”)
it will be re-started. Otherwise, a new container will be created and started (“run”).

	docker-compose pull

	Pull the latest images for all of the containers specified in the docker-compose.yml file with the image field.

	docker-compose build

	Build images for all of the containers specified in the docker-compose.yml file with the build field. Add --no-cache
to re-build the entire image (which you might want to do if the image isn’t building as expected).

	docker ps

	List running containers. Add -a to also list stopped containers.

	docker-compose kill

	Stop all containers.

	docker kill <container name>

	Stop a single container.

	docker-compose rm -v --force

	Delete the containers and volumes.

	docker rm -v <container name>

	Delete a single container and volume.

	docker rm $(docker ps -a -q) -v

	Delete all containers.

	docker-compose logs

	List the logs from all containers.

	docker logs <container name>

	List the log from a single container.

	docker-compose -f <docker-compose.yml filename> <command>

	Use a different docker-compose.yml file instead of the default.

	docker exec -it <container name> /bin/bash

	Shell into a container.

	docker rmi <image name>

	Delete an image.

	docker rmi $(docker images -q)

	Delete all images

	docker-compose scale <service name>=<number of instances>

	Create multiple instances of a service.

Scaling up with Docker

To create multiple instances of a service, use docker-compose scale [https://docs.docker.com/compose/reference/scale/].
This can be used to created multiple instances of a harvester when the queue for
that harvester is too long.

To spread containers across multiple containers, use Docker Swarm [https://docs.docker.com/swarm/overview/].

Using compose in production [https://docs.docker.com/compose/production/] provides
some additional guidance.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 0.6.1 documentation

Writing a harvester

Requirements

	Implement the Messaging Specification for harvesting social media content.
This describes the messages that must be consumed and produced by a harvester.

	Write harvested social media to a WARC [http://iipc.github.io/warc-specifications/],
following all relevant guidelines and best practices. The message for announcing the
creation of a WARC is described in the Messaging Specification. The WARC file must be
written to <base path>/<harvest year>/<harvest month>/<harvest day>/<harvest hour>/,
e.g., /data/test_collection_set/2015/09/12/19/. (Base path is provided in the harvest start
message.) Any filename may be used but it must end in .warc or .warc.gz. It is recommended
that the filename include the harvest id (with file system unfriendly characters removed) and
a timestamp of the harvest.

	Extract urls for related content from the harvested social media content, e.g., a photo included
in a tweet. The message for publishing the list of urls is described in the Messaging Specification.

	Document the harvest types supported by the harvester. This should include the identifier of the
type, the API methods called, the required parameters, the optional parameters, what is included
in the summary, and what urls are extracted. See the Flickr
Harvester [https://github.com/gwu-libraries/sfm-flickr-harvester#harvest-start-messages] as an example.

	The smoke tests [https://github.com/gwu-libraries/sfm-docker/tree/master/smoke_tests]
must be able to prove that a harvester is up and running. At the very least, the
smoke tests should check that the queues required by a harvester have been created. (See
test_queues() [https://github.com/gwu-libraries/sfm-docker/blob/master/smoke_tests/test_mq.py].)

	Be responsible for its own state, e.g., keeping track of the last tweet harvested from a user timeline.
See sfmutils.state_store [https://github.com/gwu-libraries/sfm-utils/blob/sfm_t46-twitter_harvester/sfmutils/state_store.py]
for re-usable approaches to storing state.

	Create all necessary exchanges, queues, and bindings for producing and consuming messages
as described in Messaging.

	Provide master and production Docker images for the harvester on Docker Hub [https://hub.docker.com/].
The master image should have the master tag and contain the latest code from the master branch.
(Setup an automated build [https://docs.docker.com/docker-hub/builds/] to simplify updating the master image.)
There must be a version specific production images, e.g., 1.3.0 for each release. For example, see the Flickr
Harvester’s dockerfiles [https://github.com/gwu-libraries/sfm-flickr-harvester/tree/master/docker]
and Docker Hub repo [https://hub.docker.com/r/gwul/sfm-flickr-harvester/].

Suggestions

	See sfm-utils [https://github.com/gwu-libraries/sfm-utils] for re-usable harvester
code. In particular, consider subclassing BaseHarvester.

	Create a development Docker image. The development Docker images links in the code outside
of the container so that a developer can make changes to the running code. For example, see
the Flickr harvester development image [https://github.com/gwu-libraries/sfm-flickr-harvester/tree/master/docker/dev].

	Create a development docker-compose.yml. This should include the development Docker image
and only the additional images that the harvester depends on, e.g., a Rabbit container. For
example, see the Flickr harvester development docker-compose.yml [https://github.com/gwu-libraries/sfm-flickr-harvester/blob/master/docker/dev.docker-compose.yml].

	When possible, use existing API libraries.

	Consider write integration tests that test the harvester in an integration test environment.
(That is, an environment that includes the other services that the harvester depends on.)
For example, see the Flickr Harvester’s integration tests [https://github.com/gwu-libraries/sfm-flickr-harvester/blob/master/tests/test_flickr_harvester.py].

	See the Twitter harvester unit tests [https://github.com/gwu-libraries/sfm-twitter-harvester/blob/master/tests/__init__.py]
for a pattern on configuring API keys in unit and integration tests.

Notes

	Harvesters can be written in any programming language.

	Changes to gwu-libraries/* repos require pull requests. Pull requests are welcome
from non-GWU developers.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 0.6.1 documentation

Messaging

RabbitMQ

RabbitMQ is used as a message broker.

The RabbitMQ managagement console is exposed at http://<your docker host>:15672/.
The username is sfm_user. The password is the value of RABBITMQ_DEFAULT_PASS
in secrets.env.

Publishers/consumers

	The hostname for RabbitMQ is mq and the port is 5672.

	It cannot be guaranteed that the RabbitMQ docker container will be up and ready when
any other container is started. Before starting, wait for a connection to be available
on port 5672 on rabbit. See appdeps.py [https://github.com/gwu-libraries/appdeps]
for docker application dependency support.

	Publishers/consumers may not assume that the requisite exchanges/queues/bindings
have previously been created. They must declare them as specified below.

Exchange

sfm_exchange is a durable topic exchange to be used for all messages. All
publishers/consumers must declare it.:

#Declare sfm_exchange
from kombu import Connection

exchange = Exchange(name="sfm_exchange,
 type="topic", durable=True)
exchange(channel).declare()

Queues

All queues must be declared durable.:

#Declare harvester queue
from kombu import Queue
queue = Queue(name="harvester",
 exchange=exchange,
 channel=channel,
 durable=True)
queue.declare()
queue.bind_to(exchange=exchange,
 routing_key="harvest.status.*.*")

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	sfm 0.6.1 documentation

Messaging Specification

Introduction

SFM is architected as a number of components that exchange messages via a messaging
queue. To implement functionality, these components send and receive messages and perform
certain actions. The purpose of this document is to describe this interaction between the
components (called a “flow”) and to specify the messages that they will exchange.

Note that as additional functionality is added to SFM, additional flows and messages
will be added to this document.

General

	Messages may include extra information beyond what is specified below.
Message consumers should ignore any extra information.

	RabbitMQ will be used for the messaging queue. See the Messaging docs for additional
information. It is assumed in the flows below that components receive messages by
connecting to appropriately defined queues and publish messages by submitting them
to the appropriate exchange.

Harvesting social media content

Harvesting is the process of retrieving social media content from the APIs
of social media services and writing to WARC files. It also includes extracting
urls for other web resources from the social media so that they can be
harvested by a web harvester. (For example, the link for an image may be extracted
from a tweet.)

Background information

	A requester is an application that requests that a harvest be performed. A
requester may also want to monitor the status of a harvest. In the current
architecture, the SFM UI serves the role of requester.

	A stream harvest is a harvest that is intended to continue indefinitely until
terminated. A harvest of a Twitter public stream [https://dev.twitter.com/streaming/public]
is an example of a stream harvest. A stream harvest is different from a non-stream
harvest in that a requester must both start and optionally stop a stream harvest.
Following the naming conventions from Twitter, a harvest of a REST, non-streaming API
will be referred to as a REST harvest.

	Depending on the implementation, a harvester may produce a single warc or multiple warcs. It
is likely that in general stream harvests will result in multiple warcs, but REST harvest will
result in a single warc.

Flow

The following is the flow for a harvester performing a REST harvest and
creating a single warc:

	Requester publishes a harvest start message.

	Upon receiving the harvest message, a harvester:
	Makes the appropriate api calls.

	Extracts urls for web resources from the results.

	Writes the api calls to a warc.

	Upon completing the api harvest, the harvester:
	Publishes a web harvest message containing the extracted urls.

	Publishes a warc created message.

	Publishes a harvest status message with the status of completed success or completed failure.

The following is the message flow for a harvester performing a stream harvest and
creating multiple warcs:

	Requester publishes a harvest start message.

	Upon receiving the harvest message, a harvester:
	Opens the api stream.

	Extracts urls for web resources from the results.

	Writes the stream results to a warc.

	When rotating to a new warc, the harvester publishes a warc created message.

	At intervals during the harvest, the harvester:
	Publishes a web harvest message containing extracted urls.

	Publishes a harvest status message with the status of running.

	When ready to stop, the requester publishes a harvest stop message.

	Upon receiving the harvest stop message, the harvester:
	Closes the api stream.

	Publishes a final web harvest message containing extracted urls.

	Publishes a final warc created message.

	Publishes a final harvest status message with the status of completed success or completed failure.

	Any harvester may send harvest status messages with the status of running before the final
harvest status message. A harvester performing a stream harvest must send harvest status messages
at regular intervals.

	A requester should not send harvest stop messages for a REST harvest. A harvester
performing a REST harvest may ignore harvest stop messages.

Messages

Harvest start message

Harvest start messages specify for a harvester the details of a harvest. Example:

{
 "id": "sfmui:45",
 "type": "flickr_user",
 "path": "/sfm-data/collections/3989a5f99e41487aaef698680537c3f5/6980fac666c54322a2ebdbcb2a9510f5",
 "seeds": [
 {
 "id": "a36fe186fbfa47a89dbb0551e1f0f181",
 "token": "justin.littman",
 "uid": "131866249@N02"
 },
 {
 "id": "ab0a4d9369324901a890ec85f00194ac",
 "token": "library_of_congress"
 }
],
 "options": {
 "sizes": ["Thumbnail", "Large", "Original"]
 },
 "credentials": {
 "key": "abddfe6fb8bba36e8ef0278ec65dbbc8",
 "secret": "1642649c54cc3ebe"
 },
 "collection_set": {
 "id": "3989a5f99e41487aaef698680537c3f5"
 }
}

Another example:

{
 "id": "test:1",
 "type": "twitter_search",
 "path": "/sfm-data/collections/3989a5f99e41487aaef698680537c3f5/6980fac666c54322a2ebdbcb2a9510f5",
 "seeds": [
 {
 "id": "32786222ef374eb38f1c5d56321c99e8",
 "token": "gwu"
 },
 {
 "id": "0e789cddd0fb41b5950f569676702182",
 "token": "gelman"
 }
],
 "credentials": {
 "consumer_key": "EHde7ksBGgflbP5nUalEfhaeo",
 "consumer_secret": "ZtUpemtBkf2maqFiy52D5dihFPAiLebuMOmqN0jeQtXeAlen",
 "access_token": "481186914-c2yZjgbk13np0Z5MWEFQKSQNFBXd8T9r4k90YkJl",
 "access_token_secret": "jK9QOmn5Vbbmfg2ANT6KgfmKRqV8ThXVQ1G6qQg8BCejvp"
 },
 "collection_set": {
 "id": "3989a5f99e41487aaef698680537c3f5"
 }
}

	The routing key will be harvest.start.<social media platform>.<type>. For example,
harvest.start.flickr.flickr_photo.

	id: A globally unique identifier for the harvest, assigned by the requester.

	type: Identifies the type of harvest, including the social media platform. The
harvester can use this to map to the appropriate api calls.

	seeds: A list of seeds to harvest. Each seed is represented by a map containing id, token and (optionally) uid. Note
that some harvest types may not have seeds.

	options: A name/value map containing additional options for the harvest. The contents of the map
are specific to the type of harvest. (That is, the seeds for a flickr photo are going to be
different than the seeds for a twitter user timeline.)

	credentials: All credentials that are necessary to access the social media platform.
Credentials is a name/value map; the contents are specific to a social media platform.

	path: The base path for the collection.

Web resource harvest start message

Harvesters will extract urls from the harvested social media content and
publish a web resource harvest start message. This message is similar to
other harvest start messages, with the differences noted below. Example:

{
 "id": "flickr:45",
 "parent_id": "sfmui:45",
 "type": "web",
 "path": "/sfm-data/collections/3989a5f99e41487aaef698680537c3f5/6980fac666c54322a2ebdbcb2a9510f5",
 "seeds": [
 {
 "id": "3724fd97e85345ee84f5175eee09748d",
 "token": "http://www.gwu.edu/"
 },
 {
 "id": "aba6033aafce4fbabd846026ca47f13e",
 "token": "http://library.gwu.edu/"
 }
],
 "collection_set": {
 "id": "3989a5f99e41487aaef698680537c3f5"
 }
}

	The routing key will be harvest.start.web.

	parent_id: The id of the harvest from which the urls were extracted.

Harvest stop message

Harvest stop messages tell a harvester perform a stream harvest to stop. Example:

{
 "id": "sfmui:45"
}

	The routing key will be harvest.stop.<social media platform>.<type>. For example,
harvest.stop.twitter.filter.

Harvest status message

Harvest status messages allow a harvester to provide information on the harvests
it performs. Example:

{
 "id": "sfmui:45"
 "status": "completed success",
 "date_started": "2015-07-28T11:17:36.640044",
 "date_ended": "2015-07-28T11:17:42.539470",
 "infos": []
 "warnings": [],
 "errors": [],
 "stats": {
 "2016-05-20": {
 "photos": 12,
 },
 "2016-05-21": {
 "photos": 19,
 },
 },
 "token_updates": {
 "a36fe186fbfa47a89dbb0551e1f0f181": "j.littman"
 },
 "uids": {
 "ab0a4d9369324901a890ec85f00194ac": "671366249@N03"
 },
 "warcs": {
 "count": 3
 "bytes": 345234242
 }
}

	The routing key will be harvest.status.<social media platform>.<type>. For example,
harvest.status.flickr.flickr_photo.

	status: Valid values are completed success, completed failure, or running.

	infos, warnings, and errors: Lists of messages. A message should be an object
(i.e., dictionary) containing a code and message entry. Codes should be consistent
to allow message consumers to identify types of messages.

	stats: A count of items that are harvested by date. Items should be a human-understandable
labels (plural and lower-cased). Stats is optional for in progress statuses, but required for final statuses.

	token_updates: A map of uids to tokens for which a token change was detected while harvesting.
For example, for Twitter a token update would be provided whenever a user’s screen name
changes.

	uids: A map of tokens to uids for which a uid was identified while harvesting at not
provided in the harvest start message. For example, for Flickr a uid would be provided
containing the NSID for a username.

	warcs.`count`: The total number of WARCs created during this harvest.

	warcs.`bytes`: The total number of bytes of the WARCs created during this harvest.

Warc created message

Warc created message allow a harvester to provide information on the warcs that are
created during a harvest. Example:

{
 "warc": {
 "path": "/sfm-data/collections/3989a5f99e41487aaef698680537c3f5/6980fac666c54322a2ebdbcb2a9510f5/2015/07/28/11/harvest_id-2015-07-28T11:17:36Z.warc.gz",,
 "sha1": "7512e1c227c29332172118f0b79b2ca75cbe8979",
 "bytes": 26146,
 "id": "aba6033aafce4fbabd846026ca47f13e",
 "date_created": "2015-07-28T11:17:36.640178"
 },
 "collection_set": {
 "id": "3989a5f99e41487aaef698680537c3f5"
 },
 "harvest": {
 "id": "98ddaa6e8c1f4b44aaca95bc46d3d6ac",
 "type": "flickr_user"
 }
}

	The routing key will be warc_created.

	Each warc created message will be for a single warc.

Exporting social media content

Exporting is the process of extracting social media content from WARCs and writing
to export files. The exported content may be a subset or derivate of the original
content. A number of different export formats will be supported.

Background information

	A requester is an application that requests that an export be performed. A
requester may also want to monitor the status of an export. In the current
architecture, the SFM UI serves the role of requester.

	Depending on the nature of the export, a single or multiple files may be produced.

Flow

The following is the flow for an export:

	Requester publishes an export start message.

	Upon receiving the export start message, an exporter:
	Makes calls to the SFM REST API to determine the WARC files from which to export.

	Limits the content is specified by the export start message.

	Writes to export files.

	Upon completing the export, the exporter publishes an export status message
with the status of completed success or completed failure.

Export start message

Export start messages specify the requests for an export. Example:

{
 "id": "f3ddcbfc5d6b43139d04d680d278852e",
 "type": "flickr_user",
 "collection": {
 "id": "005b131f5f854402afa2b08a4b7ba960"
 },
 "path": "/sfm-data/exports/45",
 "format": "csv",
 "dedupe": true,
 "item_date_start": "2015-07-28T11:17:36.640178",
 "item_date_end": "2016-07-28T11:17:36.640178",
 "harvest_date_start": "2015-07-28T11:17:36.640178",
 "harvest_date_end": "2016-07-28T11:17:36.640178"
}

Another example:

{
 "id": "f3ddcbfc5d6b43139d04d680d278852e",
 "type": "flickr_user",
 "seeds": [
 {
 "id": "48722ac6154241f592fd74da775b7ab7",
 "uid": "23972344@N05"
 },
 {
 "id": "3ce76759a3ee40b894562a35359dfa54",
 "uid": "85779209@N08"
 }
],
 "path": "/sfm-data/exports/45",
 "format": "json"
}

	The routing key will be export.start.<social media platform>.<type>. For example,
export.start.flickr.flickr_user.

	id: A globally unique identifier for the harvest, assigned by the requester.

	type: Identifies the type of export, including the social media platform. The
export can use this to map to the appropriate export procedure.

	seeds: A list of seeds to export. Each seed is represented by a map containing id and uid.

	collection: A map containing the id of the collection to export.

	Each export start message must have a seeds or collection but not both.

	path: A directory into which the export files should be placed. The directory may not exist.

	format: A code for the format of the export. (Available formats may change.)

	dedupe: If true, duplicate social media content should be removed.

	item_date_start and item_date_end: The date of social media content should be within this range.

	harvest_date_start and harvest_date_end: The harvest date of social media content should be within this range.

Export status message

Export status messages allow an exporter to provide information on the exports
it performs. Example:

{
 "id": "f3ddcbfc5d6b43139d04d680d278852e"
 "status": "completed success",
 "date_started": "2015-07-28T11:17:36.640044",
 "date_ended": "2015-07-28T11:17:42.539470",
 "infos": []
 "warnings": [],
 "errors": [],
}

	The routing key will be export.status.<social media platform>.<type>. For example,
export.status.flickr.flickr_user.

	status: Valid values are completed success or completed failure.

	infos, warnings, and errors: Lists of messages. A message should be an object
(i.e., dictionary) containing a code and message entry. Codes should be consistent
to allow message consumers to identify types of messages.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	sfm 0.6.1 documentation

Index

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 _static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

