

 Navigation

 	
 index

 	
 next |

 	sfm 1.1.0 documentation

Social Feed Manager (SFM)

Social Feed Manager is open source software for libraries, archives, cultural heritage institutions and research
organizations. It empowers those communities’ researchers, faculty, students, and archivists to define and create
collections of data from social media platforms. Social Feed Manager will harvest from Twitter, Tumblr, Flickr,
and Sina Weibo and is extensible for other platforms. In addition to collecting data from those platforms’ APIs,
it will collect linked web pages and media.

This site provides documentation for installation and usage of SFM. See the Social Feed Manager project site [http://gwu-libraries.github.io/sfm-ui/] for full information about the project’s objectives, roadmap, and updates.

User Documentation

	Quick Start Guide
	Prerequisites

	Setting up collections

	Start harvesting

	During harvesting

	Exploring, exporting, processing and analyzing your social media data

	Access and display

Admin and Technical Documentation

	Installation and configuration
	Overview

	Local installation

	Amazon EC2 installation

	Configuration

	Authentication

	API Credentials
	Managing credentials

	Platform specifics

	Processing
	Tools

	Approaches

	Recipes

	Exploring social media data with ELK
	Enabling ELK

	Loading data

	Overview of Kibana

	Caveats

	Docker
	Installing Docker

	Helpful commands

	Scaling up with Docker

	Limitations and Known Issues

	Troubleshooting
	General tips

	Specific problems

	Still stuck?

Developer Documentation

	Development
	Setting up a development environment

	Running SFM for development

	Running tests

	Requirements files

	Development tips

	Docker tips

	Docker
	Installing Docker

	Helpful commands

	Scaling up with Docker

	Writing a harvester
	Requirements

	Suggestions

	Notes

	Messaging
	RabbitMQ

	Publishers/consumers

	Exchange

	Queues

	Messaging Specification
	Introduction

	General

	Harvesting social media content

	Exporting social media content

Indices and tables

	Index

	Module Index

	Search Page

Funding history

	Development of this project has been supported by a grant (#NARDI-14-50017-14) from the National Historical Publications & Records Commission [http://www.archives.gov/nhprc/] to George Washington University Libraries from 2014-2017.

	Development of the Sina Weibo harvester is supported by a grant from the Council on East Asian Libraries [http://www.eastasianlib.org/].

	
	Prior development of SFM under the previous repository [https://github.com/gwu-libraries/social-feed-manager]

	was supported by a grant (#LG-46-13-0257-13) from the Institute of Museum and Library Services [http://www.imls.gov/]
to George Washington University Libraries from 2013-2014.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 1.1.0 documentation

Quick Start Guide

This quick start guide describes how you can start using Social Feed Manager to select, harvest,
explore, export, process and analyze social media data. This covers just the basics of using the software;
technical information about installing and administering SFM can be found in the technical-documentation.

Prerequisites

SFM in operation

This quick start guide assumes SFM is already set up and running. For details about installing and administering
SFM, see technical-documentation.

An SFM account

You can sign up for an account by clicking the Sign Up link from within SFM.

If you’d like to set up shared collecting at your institution, you’ll need to have your
systems administrator set up groups in SFM.

API credentials

You will need API credentials for each of the social media platforms from which you want to
collect. This is more than the Twitter/Flickr/Weibo account that you may already
have. To get API credentials:

	Request credentials from the social media platform and enter them into Credentials section. The API Credentials
page provides instructions for each platform.

	For some social media platforms, your administrator may have enabled an option that will allow you to
connect your account without leaving SFM. With your permission, SFM will get credentials on your behalf.
Click Credentials and then Connect [Twitter, Tumblr, or Weibo] Account.

	If you are part of a group, you’ll be able to use the credentials already provided by another member of the group.

Setting up collections

Hopefully you’ve considered what you want to use SFM to collect: which social media accounts, which
queries/hashtags/searches/etc., and on which platform(s). You may also have learned a bit about the social
media platforms’ APIs and best practices for collecting from social media APIs. Now you’d like to set
up your collections in SFM.

Create a collection set

At the top of the page, go to Collection Sets and click the Add Collection Set button. A collection set is just a group
of collections around a particular topic or theme. For example, you might set up a
“2016 U.S. Elections” collection set.

[image: _images/collection_set.png]

Create a collection

On the collection set detail page, under Collections click the Add Collection button and select a type.

[image: _images/collection_types.png]
Collection harvest types differ based on the social media platform and the part of the API from which the social media is to
be collected. For example, a “Twitter search” collects tweets from Twitter’s search API [https://dev.twitter.com/rest/public/search].

The collection types supported by SFM include:

	Twitter search

	Twitter filter

	Twitter user timeline

	Twitter sample

	Flickr user

	Weibo timeline

SFM allows you to create multiple collections of each type within a collection set. For example, you might
create a “Democratic candidate Twitter user timelines” collection and a “Republican candidate Twitter user
timelines” collection. Collections are one way of organizing harvested content.

Each collection’s harvest type has specific options, which may include:

	Schedule of how often to collect (e.g. daily, monthly). Streaming harvest types such as Twitter filter don’t have a schedule – they’re either on or off.

	Whether to perform web harvests of images, videos, or web pages embedded or linked from the posts.

	Whether to harvest incrementally. For example, each time a Twitter user timeline harvest runs, it can either collect only new items since the last harvest, or it can try to re-collect each entire timeline.

[image: _images/options.png]

Add seeds

Some harvest types require seeds, which are the specific targets for collection.

[image: _images/seeds.png]
As shown in the chart below, what a seed is and the number of seeds varies by harvest type. Note that some
harvest types don’t have any seeds.

	Harvest type
	Seed
	How many?

	Twitter search
	Search query
	1 or more

	Twitter filter
	Track/Follow/Locations
	1 or more

	Twitter user timeline
	Twitter Account Name or ID
	1 or more

	Twitter sample
	None
	None

	Flickr user
	Flickr Account Name or ID
	1 or more

	Weibo timeline
	None
	None

Start harvesting

Each collection’s detail page has a Turn On button.

[image: _images/on.png]
Once you turn on the collection, harvesting will proceed in the background according to the
collection’s schedule. It will stop when it hits the end date or you turn it off.

The collection’s detail page will also show a message noting when the next harvest is
scheduled for.

[image: _images/next_harvest.png]
As harvesting progresses, SFM will list the results of harvests on the
collection’s detail page.

[image: _images/harvests.png]

During harvesting

Within SFM, harvesting is performed by (you guessed it) harvesters. Harvesters
make calls to the social media platforms’ APIs and records the social media data
in WARC files. (WARC [https://en.wikipedia.org/wiki/Web_ARChive] is a standard
file format used for web archiving.)

Depending on the collection options you selected, SFM may also extract URLs from
the posts; these URLs link to web resources such as images, web pages, etc. SFM
passes the URLs to the web harvester, which will collect these web
resources (similar to more traditional web archiving).

To monitor harvesting:

	View details on each harvest in the Harvests section of the collection detail page.

	Check the visualizations of the number of items harvested for each collection on the home page.
(Click Social Feed Manager in the top left of the page).

[image: _images/viz.png]
If you want to make changes to the collection’s options and/or its seeds after
harvesting is started, turn off the collection and then click the Edit button.

[image: _images/edit.png]
You’ll be able to turn it back on and resume collecting afterwards.

Exploring, exporting, processing and analyzing your social media data

SFM provides several mechanisms for exporting collected social media data or
feeding the social media data into your own processing pipelines. It also provides
some basic tools for exploring and analyzing the collected content within the
SFM environment.

Exports

To export collected social media data, click the Export button on the
collection detail page. Exports are available in a number of formats, including Excel,
CSV, and JSON.

[image: _images/export.png]
The “Full JSON” format provides the posts (e.g. tweets) in their
original form, whereas the other export formats provide a subset of the metadata
for each social media item. For example, for a tweet, the CSV export
includes the tweet’s “coordinates” value but not the “geo” value.

Dehydration (exporting a list of just the IDs of social media items) is supported for certain
data-sharing purposes.

Exports are run in the background, and larger exports may take a significant
amount of time. You will receive an email when it is completed or you can
monitor the status on the Exports page, where you can vew details about the
export. This is also where you will find a link to download the export file
once it becomes available.

[image: _images/export_page.png]
[image: _images/excel.png]

Processing

If you’ve set up a processing container, or if you’ve installed SFM tools locally,
then you have access to the collected social media data from the command line.
You can then feed the data into your own processing pipeline and use your own tools.

More on this topic can be found in the Processing section.

Exploration and analysis

While SFM does not provide a comprehensive toolset for exploring and analyzing the
collected social media data, it provides some basic exploration and analysis tools and allows
you to export social media data for use with your own tools.

Tools provided by SFM are:

	ELK (Elasticsearch, Logstash, Kibana)

The ELK stack is a general-purpose framework for exploring data. It
provides support for loading, querying, analysis, and visualization. SFM provides an instance of ELK
that has been customized for exploring social media data, in particular, Twitter and Weibo data.

[image: _images/kibana.png]
ELK may be particularly useful for monitoring and adjusting the targets of ongoing
social media collections. For example, it can be used to discover additional
relevant Twitter hashtags or user accounts to collect, based on what has been
collected so far.

ELK requires some additional setup. More on this topic can be found in the Exploring social media data with ELK section.

	Processing container

A processing container allows you to have access to the collected social
media content from the command line. The processing container has been
provisioned with a handful of analysis tools such as Twarc utils [https://github.com/edsu/twarc/tree/master/utils].

The following shows piping some tweets into a wordcloud generator from within a processing container:

find_warcs.py 4f4d1 | xargs twitter_rest_warc_iter.py | python /opt/twarc/utils/wordcloud.py

More on this topic can be found in the Processing section.

Access and display

SFM does not currently provide a web interface to the collected social media
content. However, this should be possible, and we welcome your ideas and
contributions.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 1.1.0 documentation

Installation and configuration

Overview

The supported approach for deploying SFM is Docker containers. For more information on Docker, see Docker.

Each SFM service will provide images for the containers needed to run the service
(in the form of Dockerfile s). These images will be published to Docker Hub [https://hub.docker.com/].
GWU created images will be part of the GWUL organization [https://hub.docker.com/u/gwul]
and be prefixed with sfm-.

sfm-docker [https://github.com/gwu-libraries/sfm-docker] provides the necessary
docker-compose.yml files to compose the services into a complete instance of SFM.

The following will describe how to setup an instance of SFM that uses the latest release
(and is suitable for a production deployment.) See the development documentation for other
SFM configurations.

SFM can be deployed without Docker. The various Dockerfile s should provide
reasonable guidance on how to accomplish this.

Local installation

Installing locally requires Docker and Docker-Compose. See Installing Docker.

	Either clone the sfm-docker repository and copy the example configuration files:

git clone https://github.com/gwu-libraries/sfm-docker.git
cd sfm-docker
cp example.prod.docker-compose.yml docker-compose.yml
cp example.env .env

or just download example.prod.docker-compose.yml and example.env:

curl -L https://github.com/gwu-libraries/sfm-docker/raw/master/example.prod.docker-compose.yml > docker-compose.yml
curl -L https://github.com/gwu-libraries/sfm-docker/raw/master/example.env > .env

	Update configuration in .env as described in Configuration.

	Bring up the containers:

docker-compose up -d

Notes:

	The first time you bring up the containers, their images will be pulled from Docker Hub [https://hub.docker.com]. This will take several minutes.

Amazon EC2 installation

To launch an Amazon EC2 instance running SFM, follow the normal procedure for launching an instance.
In Step 3: Configure Instance Details, under Advanced Details paste the following in
user details and modify as appropriate as described in Configuration:

#cloud-config
repo_update: true
repo_upgrade: all

packages:
 - python-pip

runcmd:
 - curl -sSL https://get.docker.com/ | sh
 - usermod -aG docker ubuntu
 - pip install -U docker-compose
 - mkdir /sfm-data
 - mkdir /sfm-processing
 - cd /home/ubuntu
This brings up the latest production release. To bring up master, remove prod.
 - curl -L https://github.com/gwu-libraries/sfm-docker/raw/master/example.prod.docker-compose.yml > docker-compose.yml
 - curl -L https://github.com/gwu-libraries/sfm-docker/raw/master/example.env > .env
Set config below by uncommenting.
Don't forget to escape $ as \$.
COMMON CONFIGURATION
- echo TZ=America/New_York >> .env
VOLUME CONFIGURATION
Don't change these.
 - echo DATA_VOLUME=/sfm-data:/sfm-data
 - echo PROCESSING_VOLUME=/sfm-processing:/sfm-processing
SFM UI CONFIGURATION
Don't change this.
 - echo SFM_HOSTNAME=`curl http://169.254.169.254/latest/meta-data/public-hostname` >> .env
 - echo SFM_PORT=80 >> .env
To send email, set these correctly.
- echo SFM_SMTP_HOST=smtp.gmail.com >> .env
- echo SFM_EMAIL_USER=someone@gmail.com >> .env
- echo SFM_EMAIL_PASSWORD=password >> .env
To enable connecting to social media accounts, provide the following.
- echo TWITTER_CONSUMER_KEY=mBbq9ruffgEcfsktgQztTHUir8Kn0 >> .env
- echo TWITTER_CONSUMER_SECRET=Pf28yReB9Xgz0fpLVO4b46r5idZnKCKQ6xlOomBAjD5npFEQ6Rm >> .env
- echo WEIBO_API_KEY=13132044538 >> .env
- echo WEIBO_API_SECRET=68aea49fg26ea5072ggec14f7c0e05a52 >> .env
- echo TUMBLR_CONSUMER_KEY=Fki09cW957y56h6fhRtCnig14QhpM0pjuHbDWMrZ9aPXcsthVQq >> .env
- echo TUMBLR_CONSUMER_SECRET=aPTpFRE2O7sVl46xB3difn8kBYb7EpnWfUBWxuHcB4gfvP >> .env
For automatically created admin account
- echo SFM_SITE_ADMIN_NAME=sfmadmin >> .env
- echo SFM_SITE_ADMIN_EMAIL=nowhere@example.com >> .env
- echo SFM_SITE_ADMIN_PASSWORD=password >> .env
RABBIT MQ CONFIGURATION
- echo RABBITMQ_USER=sfm_user >> .env
- echo RABBITMQ_PASSWORD=password >> .env
- echo RABBITMQ_MANAGEMENT_PORT=15672 >> .env
DB CONFIGURATION
- echo POSTGRES_PASSWORD=password >> .env
WEB HARVESTER CONFIGURATION
- echo HERITRIX_USER=sfm_user >> .env
- echo HERITRIX_PASSWORD=password >> .env
- echo HERITRIX_ADMIN_PORT=8443 >> .env
- echo HERITRIX_CONTACT_URL=http://library.myschool.edu >> .env
 - docker-compose up -d

When the instance is launched, SFM will be installed and started.

Note the following:

	Starting up the EC2 instance will take several minutes.

	This has been tested with Ubuntu Server 14.04 LTS, but may work with other AMI types.

	We don’t have recommendations for sizing, but providing multiple processors even for
testing/experimentation is suggested.

	If you need to make additional changes to your docker-compose.yml, you can ssh into the EC2 instance
and make changes. docker-compose.yml and .env will be in the default user’s
home directory.

	Make sure to configure a security group that exposes the proper ports. To see which
ports are used by which services, see example.prod.docker-compose.yml [https://github.com/gwu-libraries/sfm-docker/blob/master/example.prod.docker-compose.yml].

	To learn more about configuring EC2 instances with user data, see the AWS user guide [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html].

Configuration

Configuration is documented in example.env. For a production deployment, pay particular attention to the following:

	Set new passwords for SFM_SITE_ADMIN_PASSWORD, RABBIT_MQ_PASSWORD, POSTGRES_PASSWORD, and HERITRIX_PASSWORD.

	The data volume strategy [https://docs.docker.com/engine/userguide/dockervolumes/#creating-and-mounting-a-data-volume-container]
is used to manage the volumes that store SFM’s data. By default, normal Docker volumes are used. To use a host volume
instead, change the DATA_VOLUME and PROCESSING_VOLUME settings. Host volumes are recommended for production
because they allow access to the data from outside of Docker.

	Set the SFM_HOSTNAME and SFM_PORT appropriately. These are the public hostname (e.g., sfm.gwu.edu) and port (e.g., 80)
for SFM.

	Email is configured by providing SFM_SMTP_HOST, SFM_EMAIL_USER, and SFM_EMAIL_PASSWORD.
(If the configured email account is hosted by Google, you will need to configure the account to “Allow less secure apps.”
Currently this setting is accessed, while logged in to the google account, via https://myaccount.google.com/security#connectedapps).

	Application credentials for social media APIs are configured in by providing the TWITTER_CONSUMER_KEY,
TWITTER_CONSUMER_SECRET, WEIBO_API_KEY, WEIBO_API_SECRET, and/or TUMBLR_CONSUMER_KEY,
TUMBLR_CONSUMER_SECRET. These are optional, but will make acquiring credentials easier for users.
For more information and alternative approaches see API Credentials.

	Set an admin email address with SFM_SITE_ADMIN_EMAIL.

	Provide a contact URL (e.g., http://library.gwu.edu) to be used when web harvesting with HERITRIX_CONTACT_URL.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 1.1.0 documentation

Authentication

Social Feed Manager allows users to self-sign up for accounts.
Those accounts are stored and managed by SFM. Future versions of SFM will
support authentication against external systems, e.g., Shibboleth.

By default, a group is created for each user and the user is placed in
group. To create additional groups and modify group membership use
the Admin interface.

In general, users and groups can be administered from the Admin interface.

The current version of SFM is not very secure. Future versions of SFM
will more tightly restrict what actions users can perform and what they can
view. In the meantime, it is encouraged to take other measures to secure
SFM such as restricting access to the IP range of your institution.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 1.1.0 documentation

API Credentials

Accessing the APIs of social media platforms requires credentials for authentication
(also knows as API keys). Social Feed Manager supports managing those credentials.

Most API credentials have two parts: an application credential and a user credential.
(Flickr is the exception – only an application credential is necessary.)

It is important to understand how credentials/authentication affect what API methods can be
invoked and rate limits. For more information, consult the documentation for each
social media platform’s API.

Managing credentials

SFM supports two approaches to managing credentials: adding credentials and connecting
credentials. Both of these options are available from the Credentials page.

Adding credentials

For this approach, a user gets the application and/or user credential from the social
media platform and provide them to SFM by completing a form. More information on getting
credentials is below.

Connecting credentials

For this approach, SFM is configured with the application credentials for the social
media platform. The user credentials are obtained by the user being redirected to the social
media website to give permission to SFM to access her account.

SFM is configured with the application credentials in the docker-compose.yml. If additional
management is necessary, it can be performed using the Social Accounts section of the Admin
interface.

This is the easiest approach for users. Configuring application credentials is encouraged.

Platform specifics

Twitter

Twitter credentials can be obtained from https://apps.twitter.com/. It is recommended to change
the application permissions to read-only. You must provide a callback URL, but the URL you provide doesn’t matter.

Weibo

For instructions on obtaining Weibo credentials, see this guide [http://gwu-libraries.github.io/sfm-ui/posts/2016-04-26-weibo-api-guide].

To use the connecting credentials approach for Weibo, the redirect URL must match
the application’s actual URL and use port 80.

Flickr

Flickr credentials can be obtained from https://www.flickr.com/services/api/keys/.

Flickr does not require user credentials.

Tumblr

Tumblr credentials can be obtained from https://www.tumblr.com/oauth/apps.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 1.1.0 documentation

Processing

Your social media data can be used in a processing/analysis pipeline. SFM provides several
tools and approaches to support this.

Tools

Warc iterators

A warc iterator tool provides an iterator to the social media data contained in WARC files. When
used from the commandline, it writes out the social items one at a time to standard out.
(Think of this as cat-ing a line-oriented JSON file. It is also equivalent to the output of
Twarc.)

Each social media type has a separate warc iterator tool. For example, twitter_rest_warc_iter.py
extracts tweets recorded from the Twitter REST API. For example:

root@0ac9caaf7e72:/sfm-data# twitter_rest_warc_iter.py
usage: twitter_rest_warc_iter.py [-h] [--pretty] [--dedupe]
 [--print-item-type]
 filepaths [filepaths ...]

Here is a list of the warc iterators:

	twitter_rest_warc_iter.py: Tweets recorded from Twitter REST API.

	twitter_stream_warc_iter.py: Tweets recorded from Twitter Streaming API.

	flickr_photo_warc_iter.py: Flickr photos

	weibo_warc_iter.py: Weibos

	tumblr_warc_iter.py: Tumblr posts

Warc iterator tools can also be used as a library.

Find Warcs

find_warcs.py helps put together a list of WARC files to be processed by other tools, e.g.,
warc iterator tools. (It gets the list of WARC files by querying the SFM API.)

Here is arguments it accepts:

root@0ac9caaf7e72:/sfm-data# find_warcs.py
usage: find_warcs.py [-h] [--include-web] [--harvest-start HARVEST_START]
 [--harvest-end HARVEST_END] [--api-base-url API_BASE_URL]
 [--debug [DEBUG]]
 collection [collection ...]

For example, to get a list of the WARC files in a particular collection, provide some part of
the collection id:

root@0ac9caaf7e72:/sfm-data# find_warcs.py 4f4d1
/sfm-data/collections/b06d164c632d405294d3c17584f03278/4f4d1a6677f34d539bbd8486e22de33b/2016/05/04/14/515dab00c05740f487e095773cce8ab1-20160504143638715-00000-47-88e5bc8a36a5-8000.warc.gz

(In this case there is only one WARC file. If there was more than one, it would be space separated.)

The collection id can be found from the SFM UI.

Note that if you are running find_warcs.py from outside a Docker environment, you will need
to supply --api-base-url.

Approaches

Processing in container

To bootstrap processing, a processing image is provided. A container instantiated from this
image is Ubuntu 14.04 and pre-installed with the warc iterator tools, find_warcs.py, and some other
use tools. It will also have read-only access to the data from /sfm-data.

The other tools are:

	jq [https://stedolan.github.io/jq/] for JSON processing.

	twarc [https://github.com/edsu/twarc] for access to the Twarc utils [https://github.com/edsu/twarc/tree/master/utils].

	JWAT Tools [https://sbforge.org/display/JWAT/JWAT-Tools] for processing WARCs.

	warctools [https://github.com/internetarchive/warctools] for processing WARCs.

	parallel [https://www.gnu.org/software/parallel/] for parallelizing processing.

To instantiate:

docker-compose run --rm processing /bin/bash

You will then be provided with a bash shell inside the container from which you can execute commands:

root@0ac9caaf7e72:/sfm-processing# find_warcs.py 4f4d1 | xargs twitter_rest_warc_iter.py | python /opt/twarc/utils/wordcloud.py

Setting PROCESSOR_VOLUME in .env to a host volume will link /sfm-processing
to your local filesystem. You can place scripts in this directory to make them
available inside the processing container or write output files to this directory to make them available outside the
processing container.

Note that once you exit the processing container, the container will be automatically removed. However, if you have
saved all of your scripts and output files to /sfm-processing, they will be available when you create a new
processing container.

Processing locally

In a typical Docker configuration, the data directory will be linked into the Docker environment.
This means that the data is available both inside and outside the Docker environment. Given this,
processing can be performed locally (i.e., outside of Docker).

The various tools can be installed locally:

GLSS-F0G5RP:tmp justinlittman$ virtualenv ENV
GLSS-F0G5RP:tmp justinlittman$ source ENV/bin/activate
(ENV)GLSS-F0G5RP:tmp justinlittman$ pip install git+https://github.com/gwu-libraries/sfm-utils.git
(ENV)GLSS-F0G5RP:tmp justinlittman$ pip install git+https://github.com/gwu-libraries/sfm-twitter-harvester.git
(ENV)GLSS-F0G5RP:tmp justinlittman$ twitter_rest_warc_iter.py
usage: twitter_rest_warc_iter.py [-h] [--pretty] [--dedupe]
 [--print-item-type]
 filepaths [filepaths ...]
twitter_rest_warc_iter.py: error: too few arguments

Recipes

Extracting URLs

The “Extracting URLs from #PulseNightclub for seeding web archiving” blog post [http://gwu-libraries.github.io/sfm-ui/posts/2016-07-11-pulse-processing]
provides some useful guidance on extracting URLs from tweets, including unshortening and sorting/counting.

Exporting to line-oriented JSON files

This recipe is for exporting social media data from WARC files to line-oriented JSON files. There will be one JSON file
for each WARC. This may be useful for some processing or for loading into some analytic tools.

This recipe uses parallel [https://www.gnu.org/software/parallel/] for parallelizing the export.

Create a list of WARC files:

find_warcs.py 7c37157 | tr ' ' '\n' > source.lst

Replace 7c37157 with the first few characters of the collection id that you want to export. The collection id is
available on the colllection detail page in SFM UI.

Create a list of JSON destination files:

cat source.lst | xargs basename -a | sed 's/.warc.gz/.json/' > dest.lst

This command puts all of the JSON files in the same directory, using the filename of the WARC file with a .json file extension.

If you want to maintain the directory structure, but use a different root directory:

cat source.lst | sed 's/sfm-data\/collection_set/sfm-processing\/export/' | sed 's/.warc.gz/.json/'

Replace sfm-processing/export with the root directory that you want to use.

Perform the export:

parallel -a source.lst -a dest.lst --xapply "twitter_stream_warc_iter.py {1} > {2}"

Replace twitter_stream_warc_iter.py with the name of the warc iterator for the type of social media data that you
are exporting.

You can also perform a filter on export using jq. For example, this only exports tweets in Spanish:

parallel -a source.lst -a dest.lst --xapply "twitter_stream_warc_iter.py {1} | jq -c 'select(.lang == \"es\")' > {2}"

And to save space, the JSON files can be gzip compressed:

parallel -a source.lst -a dest.lst --xapply "twitter_stream_warc_iter.py {1} | gzip > {2}"

You might also want to change the file extension of the destination file to ”.json.gz” by adjusting the commmand use
to create the list of JSON destination files. To access the tweets in a gzipped JSON file, use:

gzip -c <filepath>

Using jq to process JSON

For tips on using jq with JSON from Twitter and other sources, see:

	Getting Started Working with Twitter Data Using jq [http://nbviewer.jupyter.org/github/gwu-libraries/notebooks/blob/master/20160407-twitter-analysis-with-jq/Working-with-twitter-using-jq.ipynb]

	Reshaping JSON with jq [http://programminghistorian.org/lessons/json-and-jq.html]

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 1.1.0 documentation

Exploring social media data with ELK

The ELK (Elasticsearch [https://www.elastic.co/products/elasticsearch], Logstash [https://www.elastic.co/products/logstash],
Kibana [https://www.elastic.co/products/kibana]) stack is a general-purpose framework for exploring data. It
provides support for loading, querying, analysis, and visualization.

SFM provides an instance of ELK that has been customized for exploring social media data. It currently supports data from
Twitter and Weibo.

One possible use for ELK is to monitor data that is being harvested to discover new seeds to select.
For example, it may reveal new hashtags or users that are relevant to a collection.

Though you can use Logstash and Elasticsearch directly, in most cases you will interact exclusively with Kibana,
which is the exploration interface.

Enabling ELK

ELK is not available by default; it must be enabled as described here.

You can enable one or more ELK Docker containers. Each container can be configured to be loaded with all social
media data or the social media data for a single collection set.

To enable an ELK Docker container it must be added to your docker-compose.yml and then started by:

docker-compose up -d

An example container is provided in example.docker-compose.yml and example.prod.docker-compose.yml. These examples
also show how to limit to a single collection set by providing the collection set id.

By default, Kibana is available at http://<your hostname>:5601/app/kibana [http://localhost:5601/app/kibana]. (Also,
by default Elasticsearch is available on port 9200 and Logstash is available on port 5000.)

If enabling multiple ELK containers, add multiple containers to your docker-compose.yml. Make sure to give each a
unique name and map to different ports.

Loading data

ELK will automatically be loaded as new social media data is harvested. (Note, however, that there will be some latency
between the harvest and the data being available in Kibana.)

Since only new social media data is added, it is recommended that you enable the ELK Docker container before beginning
harvesting.

If you would like to load social media data that was harvested before the ELK Docker container was enabled, use the
resendwarccreatedmsgs management command:

usage: manage.py resendwarccreatedmsgs [-h] [--version] [-v {0,1,2,3}]
 [--settings SETTINGS]
 [--pythonpath PYTHONPATH] [--traceback]
 [--no-color]
 [--collection-set COLLECTION_SET]
 [--harvest-type HARVEST_TYPE] [--test]
 routing_key

The resendwarccreatedmsgs command resends warc_created messages which will trigger the loading of data by ELK.

To use this command, you will need to know the routing key. The routing key is elk_loader_<container id>.warc_created.
The container id can be found with docker ps.

The loading can be limited by collection set (--collection-set) and/or (--harvest-type). You can get collection
set ids from the collection set detail page. The available harvest types are twitter_search, twitter_filter,
twitter_user_timeline, twitter_sample, and weibo_timeline.

This shows loading the data limited to a collection set:

docker exec docker_sfmuiapp_1 python sfm/manage.py resendwarccreatedmsgs --collection-set b438a62cbcf74ad0adc09be3b07f039e elk_loader_26ce21fa2e43.warc_created

Overview of Kibana

The Kibana interface is extremely powerful. However, with that power comes complexity.
The following provides an overview of some basic functions in Kibana. For some advanced
usage, see the Kibana Reference [https://www.elastic.co/guide/en/kibana/current/index.html] or the Kibana 101: Getting Started with Visualizations [https://www.elastic.co/webinars/kibana-101-get-started-with-visualizations] video.

When you start Kibana, you probably won’t see any results.

[image: _images/no_results.png]
This is because Kibana defaults to only showing data from the last 15 minutes. Use the
date picker in the upper right corner to select a more appropriate time range.

[image: _images/date_picker.png]
Tip: At any time, you can change the date range for your query, visualization, or dashboard
using the date picker.

Discover

The Discover tab allows you to query the social media data.

[image: _images/discover.png]
By default, all social media types are queried. By limit to a single type (e.g., tweets),
click the folder icon and select the appropriate filter.

[image: _images/filter.png]
You will now only see results for that social media type.

[image: _images/results.png]
Notice that each social media item has a number of fields.

[image: _images/single_result.png]
You can search against a field. For example, to find all tweets containing the term “archiving”:

[image: _images/search_text.png]
or having the hashtag #SaveTheWeb:

[image: _images/search_hashtag.png]
or mentioning @SocialFeedMgr:

[image: _images/search_user_mention.png]

Visualize

The Visualize tab allows you to create visualizations of the social media data.

[image: _images/visualize.png]
The types of visualizations that are supported include:

	Area chart

	Data table

	Line chart

	Pie chart

	Map

	Vertical bar chart

Describing how to create visualizations is beyond the scope of this overview.

A number of visualizations have already been created for social media data. (The available
visualizations are listed on the bottom of the page.)

For example, here is the Top 10 hashtags visualization:

[image: _images/top_hashtags_viz.png]

Dashboard

The Dashboard tab provides a summary view of data, bringing together multiple visualizations
and searches on a single page.

[image: _images/dashboard.png]
A number of dashboards have already been created for social media data. To select a dashboard,
click the folder icon and select the appropriate dashboard.

[image: _images/pick_dashboard.png]
For example, here is the top of the Twitter dashboard:

[image: _images/twitter_dashboard.png]

Caveats

	This is experimental. We have not yet determined the level of development that will be performed in
the future.

	Approaches for administering and scaling ELK have not been considered.

	No security or access restrictions have been put in place around ELK.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 1.1.0 documentation

Docker

This page contains information about Docker that is useful for installation,
administration, and development.

Installing Docker

Docker Engine [https://www.docker.com/] and Docker Compose [https://docs.docker.com/compose/]

On OS X:

	Install the Docker for Mac [https://www.docker.com/products/docker#/mac].

	If you are using Docker Toolbox, switch to Docker for Mac.

On Ubuntu:

	If you have difficulties with the apt install, try the pip install.

	The docker group is automatically created. Adding your user to the docker
group [https://docs.docker.com/v1.8/installation/ubuntulinux/#create-a-docker-group]
avoids having to use sudo to run docker commands. Note that depending on how
users/groups are set up, you may need to manually need to add your user to the
group in /etc/group.

Helpful commands

	docker-compose up -d

	Bring up all of the containers specified in the docker-compose.yml file. If a container has not yet been pulled,
it will be pulled. If a container has not yet been built it will be built. If a container has been stopped (“killed”)
it will be re-started. Otherwise, a new container will be created and started (“run”).

	docker-compose pull

	Pull the latest images for all of the containers specified in the docker-compose.yml file with the image field.

	docker-compose build

	Build images for all of the containers specified in the docker-compose.yml file with the build field. Add --no-cache
to re-build the entire image (which you might want to do if the image isn’t building as expected).

	docker ps

	List running containers. Add -a to also list stopped containers.

	docker-compose kill

	Stop all containers.

	docker kill <container name>

	Stop a single container.

	docker-compose rm -v --force

	Delete the containers and volumes.

	docker rm -v <container name>

	Delete a single container and volume.

	docker rm $(docker ps -a -q) -v

	Delete all containers.

	docker-compose logs

	List the logs from all containers. Add -f to follow the logs.

	docker logs <container name>

	List the log from a single container. Add -f to follow the logs.

	docker-compose -f <docker-compose.yml filename> <command>

	Use a different docker-compose.yml file instead of the default.

	docker exec -it <container name> /bin/bash

	Shell into a container.

	docker rmi <image name>

	Delete an image.

	docker rmi $(docker images -q)

	Delete all images

	docker-compose scale <service name>=<number of instances>

	Create multiple instances of a service.

Scaling up with Docker

To create multiple instances of a service, use docker-compose scale [https://docs.docker.com/compose/reference/scale/].
This can be used to created multiple instances of a harvester when the queue for
that harvester is too long.

To spread containers across multiple containers, use Docker Swarm [https://docs.docker.com/swarm/overview/].

Using compose in production [https://docs.docker.com/compose/production/] provides
some additional guidance.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 1.1.0 documentation

Limitations and Known Issues

To make sure you have the best possible experience with SFM, you should be aware of the limitations and known issues:

	Better monitoring and logging for harvesting and exporting is needed (Ticket #303 [https://github.com/gwu-libraries/sfm-ui/issues/303] and Ticket #229 [https://github.com/gwu-libraries/sfm-ui/issues/229])

	Long-running Twitter searchs may block other harvest requests (Ticket #320 [https://github.com/gwu-libraries/sfm-ui/issues/320])

	Collections are not portable between SFM instances (Ticket #326 [https://github.com/gwu-libraries/sfm-ui/issues/326])

	Harvest and export failures are not apparent in UI (Ticket #310 [https://github.com/gwu-libraries/sfm-ui/issues/357])

	SFM is not secure. It does not currently run with HTTPS and enforcement of authorizations is not consistent in the UI.

We are planning to address these in future releases. For a complete list of tickets, see https://github.com/gwu-libraries/sfm-ui/issues

In addition, you should be aware of the following:

	Access to the Weibo API is limited, so make sure you understand what can be collected.

	SFM does not currently provide a web interface for “replaying” the collected social media or web content.

	ELK is only experimental. Scaling and administration of ELK have not been considered.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 1.1.0 documentation

Troubleshooting

General tips

	Upgrade to the latest version of Docker and Docker-Compose.

	Make sure expected containers are running with docker ps.

	Check the logs with docker-compose logs and docker logs <container name>.

Specific problems

Bind error

If when bringing up the containers you receive something like:

ERROR: driver failed programming external connectivity on endpoint docker_sfmuiapp_1 (98caab29b4ba3c2b08f70fdebad847980d80a29a2c871164257e454bc582a060): Bind for 0.0.0.0:8080 failed: port is already allocated

it means another application is already using a port configured for SFM. Either shut down the other application
or choose a different port for SFM. (Chances are the other application is Apache.)

Bad Request (400)

If you receive a Bad Request (400) when trying to access SFM, your SFM_HOST environment variable is not
configured correctly. For more information, see ALLOWED_HOSTS [https://docs.djangoproject.com/en/1.8/ref/settings/#std:setting-ALLOWED_HOSTS].

Social Network Login Failure for Twitter

If you receive a Social Network Login Failure when trying to connect a Twitter account, make sure that the Twitter app
from which you got the Twitter credentials is configured with a callback URL. The URL you provide doesn’t matter.

Docker problems

If you are having problems bringing up the Docker containers (e.g., driver failed programming external connectivity on endpoint),
restart the Docker service. On Ubuntu, this can be done with:

service docker stop
docker stop/waiting
service docker status
docker stop/waiting
service docker start
docker start/running, process 15039

Still stuck?

Contact [http://gwu-libraries.github.io/sfm-ui/contact] the SFM team. We’re happy to help.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 1.1.0 documentation

Development

Setting up a development environment

SFM is composed of a number of components. Development can be performed on each of the
components separately.

For SFM development, it is recommended to run components within a Docker environment
(instead of directly in your OS, without Docker).

Step 1: Install Docker and Docker Compose

See Installing Docker.

Step 2: Clone sfm-docker and create copies of docker-compose files

For example:

git clone https://github.com/gwu-libraries/sfm-docker.git
cd sfm-docker
cp example.docker-compose.yml docker-compose.yml
cp example.env .env

For the purposes of development, you can make changes to docker-compose.yml
and .env. This will be described more below.

Step 3: Clone the component repos

For example:

git clone https://github.com/gwu-libraries/sfm-ui.git

Repeat for each of the components that you will be working on. Each of these should
be in a sibling directory of sfm-docker.

Running SFM for development

To bring up an instance of SFM for development, change to the sfm-docker directory and execute:

docker-compose up -d

You may not want to run all of the containers. To omit a container, simply comment it out in docker-compose.yml.

By default, the code that has been committed to master for each of the containers will be executed. To execute
your local code (i.e., the code you are editing), you will want to link in your local code. To link in the local
code for a container, uncomment the volume definition that points to your local code. For example:

volumes:
 - "../sfm-twitter-harvester:/opt/sfm-twitter-harvester"

sfm-utils and warcprox are dependencies of many components. By default, the code that has been committed to master
for sfm-utils or warcprox will be used for a component. To use your local code as a dependency, you will want
to link in your local code. Assuming that you have cloned sfm-utils and warcprox, to link in the local code
as a dependency for a container, change SFM_REQS in .env to “dev” and comment the volume definition
that points to your local code. For example:

volumes:
 - "../sfm-twitter-harvester:/opt/sfm-twitter-harvester"
 - "../sfm-utils:/opt/sfm-utils"
 - "../warcprox:/opt/warcprox"

Note:
* As a Django application, SFM UI will automically detect code changes and reload. Other components must be killed
and brought back up to reflect code changes.

Running tests

Unit tests

Some components require a test_config.py file that contains credentials. For example, sfm-twitter-harvester
requires a test_config.py containing:

TWITTER_CONSUMER_KEY = "EHdoTksBfgGflP5nUalEfhaeo"
TWITTER_CONSUMER_SECRET = "ZtUpemtBkf2cEmaqiy52Dd343ihFu9PAiLebuMOmqN0QtXeAlen"
TWITTER_ACCESS_TOKEN = "411876914-c2yZjbk1np0Z5MWEFYYQKSQNFFGBXd8T4k90YkJl"
TWITTER_ACCESS_TOKEN_SECRET = "jK9QOmn5VRF5mfgAN6KgfmCKRqThXVQ1G6qQg8BCejvp"

Note that if this file is not present, unit tests that require it will be skipped. Each component’s README
will describe the test_config.py requirements.

Unit tests for most components can be run with:

python -m unittest discover

The notable exception is SFM UI, which can be run with:

cd sfm
./manage.py test --settings=sfm.settings.test_settings

Integration tests

Many components have integration tests, which are run inside docker containers. These components
have a ci.docker-compose.yml file which can be used to bring up a minimal environment for
running the tests.

As described above, some components require a test_config.py file.

To run integration tests, bring up SFM:

docker-compose -f docker/dev.docker-compose.yml up -d

Run the tests:

docker exec docker_sfmtwitterstreamharvester_1 python -m unittest discover

You will need to substitute the correct name of the container. (docker ps will list
the containers.)

And then clean up:

docker-compose -f docker/dev.docker-compose.yml kill
docker-compose -f docker/dev.docker-compose.yml rm -v --force

For reference, see each component’s .travis.yml file which shows the steps of running
the integration tests.

Smoke tests

sfm-docker contains some smoke tests which will verify that SFM is running correctly.

To run the smoke tests, first bring up SFM:

docker-compose up -d

and then run the tests:

docker-compose -f docker-compose.yml -f smoketests.docker-compose.yml run --rm smoketests python -m unittest discover

Note that the smoke tests are not yet complete.

For reference, the continuous integration deploy instructions [https://github.com/gwu-libraries/sfm-ui/wiki/Continuous-integration-deploy]
shows the steps of running the smoke tests.

Requirements files

This will vary a depending on whether a project has warcprox and sfm-utils as a dependency, but in general:

	requirements/common.txt contains dependencies, except warcprox and sfm-utils.

	requirements/release.txt references the last released version of warcprox and sfm-utils.

	requirements/master.txt references the master version of warcprox and sfm-utils.

	requirements/dev.txt references local versions of warcprox and sfm-utils in development mode.

To get a complete set of dependencies, you will need common.txt and either release.txt, master.txt or dev.txt.
For example:

virtualenv ENV
source ENV/bin/activate
pip install -r requirements/common.txt -r requirements/dev.txt

Development tips

Admin user accounts

Each component should automatically create any necessary admin accounts (e.g., a django
admin for SFM UI). Check .env for the username/passwords for those accounts.

RabbitMQ management console

The RabbitMQ management console can be used to monitor the exchange of messages. In particular, use it
to monitor the messages that a component sends, create a new queue, bind that queue to sfm_exchange
using an appropriate routing key, and then retrieve messages from the queue.

The RabbitMQ management console can also be used to send messages to the exchange so that
they can be consumed by a component. (The exchange used by SFM is named sfm_exchange.)

For more information on the RabbitMQ management console, see RabbitMQ.

Blocked ports

When running on a remote VM, some ports (e.g., 15672 used by the RabbitMQ management console) may
be blocked. SSH port forwarding [https://help.ubuntu.com/community/SSH/OpenSSH/PortForwarding]
can help make those ports available.

Django logs

Django logs for SFM UI are written to the Apache logs. In the docker environment, the level of various
loggers can be set from environment variables. For example, setting SFM_APSCHEDULER_LOG to DEBUG
in the docker-compose.yml will turn on debug logging for the apscheduler logger. The logger for
the SFM UI application is called ui and is controlled by the SFM_UI_LOG environment variable.

Apache logs

In the SFM UI container, Apache logs are sent to stdout/stderr which means they can be viewed with
docker-compose logs or docker logs <container name or id>.

Initial data

The development and master docker images for SFM UI contain some initial data. This includes a user (“testuser”,
with password “password”). For the latest initial data, see fixtures.json. For more information on fixtures,
see the Django docs [https://docs.djangoproject.com/en/1.8/howto/initial-data/].

Runserver

There are two flavors of the the development docker image for SFM UI. gwul/sfm-ui:master runs SFM UI with
Apache, just as it will in production. gwul/sfm-ui:master-runserver runs SFM UI with runserver [https://docs.djangoproject.com/en/1.8/ref/django-admin/#runserver-port-or-address-port],
which dynamically reloads changed Python code. To switch between them, change UI_TAG in .env.

Job schedule intervals

To assist with testing and development, a 5 minute interval can be added by setting SFM_FIVE_MINUTE_SCHEDULE to
True in the docker-compose.yml.

Docker tips

Building vs. pulling

Containers are created from images. Images are either built locally or pre-built and pulled from
Docker Hub [https://hub.docker.com/]. In both cases, images are created based on the docker build (i.e., the
Dockerfile and other files in the same directory as the Dockerfile).

In a docker-compose.yml, pulled images will be identified by the image field, e.g., image: gwul/sfm-ui:master. Built images
will be identified by the build field, e.g., build: app-dev.

In general, you will want to use pulled images. These are automatically built when changes are made to the Github repos.
You should periodically execute docker-compose pull to make sure you have the latest images.

You may want to build your own image if your development requires a change to the docker build (e.g., you modify
fixtures.json).

Killing, removing, and building in development

Killing a container will cause the process in the container to be stopped. Running the container again will cause
process to be re-started. Generally, you will kill and run a development container to get the process to be run
with changes you’ve made to the code.

Removing a container will delete all of the container’s data. During development, you will remove a container to make
sure you are working with a clean container.

Building a container creates a new image based on the Dockerfile. For a development image, you only need to build
when making changes to the docker build.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 1.1.0 documentation

Docker

This page contains information about Docker that is useful for installation,
administration, and development.

Installing Docker

Docker Engine [https://www.docker.com/] and Docker Compose [https://docs.docker.com/compose/]

On OS X:

	Install the Docker for Mac [https://www.docker.com/products/docker#/mac].

	If you are using Docker Toolbox, switch to Docker for Mac.

On Ubuntu:

	If you have difficulties with the apt install, try the pip install.

	The docker group is automatically created. Adding your user to the docker
group [https://docs.docker.com/v1.8/installation/ubuntulinux/#create-a-docker-group]
avoids having to use sudo to run docker commands. Note that depending on how
users/groups are set up, you may need to manually need to add your user to the
group in /etc/group.

Helpful commands

	docker-compose up -d

	Bring up all of the containers specified in the docker-compose.yml file. If a container has not yet been pulled,
it will be pulled. If a container has not yet been built it will be built. If a container has been stopped (“killed”)
it will be re-started. Otherwise, a new container will be created and started (“run”).

	docker-compose pull

	Pull the latest images for all of the containers specified in the docker-compose.yml file with the image field.

	docker-compose build

	Build images for all of the containers specified in the docker-compose.yml file with the build field. Add --no-cache
to re-build the entire image (which you might want to do if the image isn’t building as expected).

	docker ps

	List running containers. Add -a to also list stopped containers.

	docker-compose kill

	Stop all containers.

	docker kill <container name>

	Stop a single container.

	docker-compose rm -v --force

	Delete the containers and volumes.

	docker rm -v <container name>

	Delete a single container and volume.

	docker rm $(docker ps -a -q) -v

	Delete all containers.

	docker-compose logs

	List the logs from all containers. Add -f to follow the logs.

	docker logs <container name>

	List the log from a single container. Add -f to follow the logs.

	docker-compose -f <docker-compose.yml filename> <command>

	Use a different docker-compose.yml file instead of the default.

	docker exec -it <container name> /bin/bash

	Shell into a container.

	docker rmi <image name>

	Delete an image.

	docker rmi $(docker images -q)

	Delete all images

	docker-compose scale <service name>=<number of instances>

	Create multiple instances of a service.

Scaling up with Docker

To create multiple instances of a service, use docker-compose scale [https://docs.docker.com/compose/reference/scale/].
This can be used to created multiple instances of a harvester when the queue for
that harvester is too long.

To spread containers across multiple containers, use Docker Swarm [https://docs.docker.com/swarm/overview/].

Using compose in production [https://docs.docker.com/compose/production/] provides
some additional guidance.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 1.1.0 documentation

Writing a harvester

Requirements

	Implement the Messaging Specification for harvesting social media content.
This describes the messages that must be consumed and produced by a harvester.

	Write harvested social media to a WARC [http://iipc.github.io/warc-specifications/],
following all relevant guidelines and best practices. The message for announcing the
creation of a WARC is described in the Messaging Specification. The WARC file must be
written to <base path>/<harvest year>/<harvest month>/<harvest day>/<harvest hour>/,
e.g., /data/test_collection_set/2015/09/12/19/. (Base path is provided in the harvest start
message.) Any filename may be used but it must end in .warc or .warc.gz. It is recommended
that the filename include the harvest id (with file system unfriendly characters removed) and
a timestamp of the harvest.

	Extract urls for related content from the harvested social media content, e.g., a photo included
in a tweet. The message for publishing the list of urls is described in the Messaging Specification.

	Document the harvest types supported by the harvester. This should include the identifier of the
type, the API methods called, the required parameters, the optional parameters, what is included
in the summary, and what urls are extracted. See the Flickr
Harvester [https://github.com/gwu-libraries/sfm-flickr-harvester#harvest-start-messages] as an example.

	The smoke tests [https://github.com/gwu-libraries/sfm-docker/tree/master/smoke_tests]
must be able to prove that a harvester is up and running. At the very least, the
smoke tests should check that the queues required by a harvester have been created. (See
test_queues() [https://github.com/gwu-libraries/sfm-docker/blob/master/smoke_tests/test_mq.py].)

	Be responsible for its own state, e.g., keeping track of the last tweet harvested from a user timeline.
See sfmutils.state_store [https://github.com/gwu-libraries/sfm-utils/blob/sfm_t46-twitter_harvester/sfmutils/state_store.py]
for re-usable approaches to storing state.

	Create all necessary exchanges, queues, and bindings for producing and consuming messages
as described in Messaging.

	Provide master and production Docker images for the harvester on Docker Hub [https://hub.docker.com/].
The master image should have the master tag and contain the latest code from the master branch.
(Setup an automated build [https://docs.docker.com/docker-hub/builds/] to simplify updating the master image.)
There must be a version specific production images, e.g., 1.3.0 for each release. For example, see the Flickr
Harvester’s dockerfiles [https://github.com/gwu-libraries/sfm-flickr-harvester/tree/master/docker]
and Docker Hub repo [https://hub.docker.com/r/gwul/sfm-flickr-harvester/].

Suggestions

	See sfm-utils [https://github.com/gwu-libraries/sfm-utils] for re-usable harvester
code. In particular, consider subclassing BaseHarvester.

	Create a development Docker image. The development Docker images links in the code outside
of the container so that a developer can make changes to the running code. For example, see
the Flickr harvester development image [https://github.com/gwu-libraries/sfm-flickr-harvester/tree/master/docker/dev].

	Create a development docker-compose.yml. This should include the development Docker image
and only the additional images that the harvester depends on, e.g., a Rabbit container. For
example, see the Flickr harvester development docker-compose.yml [https://github.com/gwu-libraries/sfm-flickr-harvester/blob/master/docker/dev.docker-compose.yml].

	When possible, use existing API libraries.

	Consider write integration tests that test the harvester in an integration test environment.
(That is, an environment that includes the other services that the harvester depends on.)
For example, see the Flickr Harvester’s integration tests [https://github.com/gwu-libraries/sfm-flickr-harvester/blob/master/tests/test_flickr_harvester.py].

	See the Twitter harvester unit tests [https://github.com/gwu-libraries/sfm-twitter-harvester/blob/master/tests/__init__.py]
for a pattern on configuring API keys in unit and integration tests.

Notes

	Harvesters can be written in any programming language.

	Changes to gwu-libraries/* repos require pull requests. Pull requests are welcome
from non-GWU developers.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sfm 1.1.0 documentation

Messaging

RabbitMQ

RabbitMQ is used as a message broker.

The RabbitMQ managagement console is exposed at http://<your docker host>:15672/.
The username is sfm_user. The password is the value of RABBITMQ_DEFAULT_PASS
in secrets.env.

Publishers/consumers

	The hostname for RabbitMQ is mq and the port is 5672.

	It cannot be guaranteed that the RabbitMQ docker container will be up and ready when
any other container is started. Before starting, wait for a connection to be available
on port 5672 on rabbit. See appdeps.py [https://github.com/gwu-libraries/appdeps]
for docker application dependency support.

	Publishers/consumers may not assume that the requisite exchanges/queues/bindings
have previously been created. They must declare them as specified below.

Exchange

sfm_exchange is a durable topic exchange to be used for all messages. All
publishers/consumers must declare it.:

#Declare sfm_exchange
from kombu import Connection

exchange = Exchange(name="sfm_exchange,
 type="topic", durable=True)
exchange(channel).declare()

Queues

All queues must be declared durable.:

#Declare harvester queue
from kombu import Queue
queue = Queue(name="harvester",
 exchange=exchange,
 channel=channel,
 durable=True)
queue.declare()
queue.bind_to(exchange=exchange,
 routing_key="harvest.status.*.*")

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	sfm 1.1.0 documentation

Messaging Specification

Introduction

SFM is architected as a number of components that exchange messages via a messaging
queue. To implement functionality, these components send and receive messages and perform
certain actions. The purpose of this document is to describe this interaction between the
components (called a “flow”) and to specify the messages that they will exchange.

Note that as additional functionality is added to SFM, additional flows and messages
will be added to this document.

General

	Messages may include extra information beyond what is specified below.
Message consumers should ignore any extra information.

	RabbitMQ will be used for the messaging queue. See the Messaging docs for additional
information. It is assumed in the flows below that components receive messages by
connecting to appropriately defined queues and publish messages by submitting them
to the appropriate exchange.

Harvesting social media content

Harvesting is the process of retrieving social media content from the APIs
of social media services and writing to WARC files. It also includes extracting
urls for other web resources from the social media so that they can be
harvested by a web harvester. (For example, the link for an image may be extracted
from a tweet.)

Background information

	A requester is an application that requests that a harvest be performed. A
requester may also want to monitor the status of a harvest. In the current
architecture, the SFM UI serves the role of requester.

	A stream harvest is a harvest that is intended to continue indefinitely until
terminated. A harvest of a Twitter public stream [https://dev.twitter.com/streaming/public]
is an example of a stream harvest. A stream harvest is different from a non-stream
harvest in that a requester must both start and optionally stop a stream harvest.
Following the naming conventions from Twitter, a harvest of a REST, non-streaming API
will be referred to as a REST harvest.

	Depending on the implementation, a harvester may produce a single warc or multiple warcs. It
is likely that in general stream harvests will result in multiple warcs, but REST harvest will
result in a single warc.

Flow

The following is the flow for a harvester performing a REST harvest and
creating a single warc:

	Requester publishes a harvest start message.

	Upon receiving the harvest message, a harvester:
	Makes the appropriate api calls.

	Extracts urls for web resources from the results.

	Writes the api calls to a warc.

	Upon completing the api harvest, the harvester:
	Publishes a web harvest message containing the extracted urls.

	Publishes a warc created message.

	Publishes a harvest status message with the status of completed success or completed failure.

The following is the message flow for a harvester performing a stream harvest and
creating multiple warcs:

	Requester publishes a harvest start message.

	Upon receiving the harvest message, a harvester:
	Opens the api stream.

	Extracts urls for web resources from the results.

	Writes the stream results to a warc.

	When rotating to a new warc, the harvester publishes a warc created message.

	At intervals during the harvest, the harvester:
	Publishes a web harvest message containing extracted urls.

	Publishes a harvest status message with the status of running.

	When ready to stop, the requester publishes a harvest stop message.

	Upon receiving the harvest stop message, the harvester:
	Closes the api stream.

	Publishes a final web harvest message containing extracted urls.

	Publishes a final warc created message.

	Publishes a final harvest status message with the status of completed success or completed failure.

	Any harvester may send harvest status messages with the status of running before the final
harvest status message. A harvester performing a stream harvest must send harvest status messages
at regular intervals.

	A requester should not send harvest stop messages for a REST harvest. A harvester
performing a REST harvest may ignore harvest stop messages.

Messages

Harvest start message

Harvest start messages specify for a harvester the details of a harvest. Example:

{
 "id": "sfmui:45",
 "type": "flickr_user",
 "path": "/sfm-data/collections/3989a5f99e41487aaef698680537c3f5/6980fac666c54322a2ebdbcb2a9510f5",
 "seeds": [
 {
 "id": "a36fe186fbfa47a89dbb0551e1f0f181",
 "token": "justin.littman",
 "uid": "131866249@N02"
 },
 {
 "id": "ab0a4d9369324901a890ec85f00194ac",
 "token": "library_of_congress"
 }
],
 "options": {
 "sizes": ["Thumbnail", "Large", "Original"]
 },
 "credentials": {
 "key": "abddfe6fb8bba36e8ef0278ec65dbbc8",
 "secret": "1642649c54cc3ebe"
 },
 "collection_set": {
 "id": "3989a5f99e41487aaef698680537c3f5"
 }
}

Another example:

{
 "id": "test:1",
 "type": "twitter_search",
 "path": "/sfm-data/collections/3989a5f99e41487aaef698680537c3f5/6980fac666c54322a2ebdbcb2a9510f5",
 "seeds": [
 {
 "id": "32786222ef374eb38f1c5d56321c99e8",
 "token": "gwu"
 },
 {
 "id": "0e789cddd0fb41b5950f569676702182",
 "token": "gelman"
 }
],
 "credentials": {
 "consumer_key": "EHde7ksBGgflbP5nUalEfhaeo",
 "consumer_secret": "ZtUpemtBkf2maqFiy52D5dihFPAiLebuMOmqN0jeQtXeAlen",
 "access_token": "481186914-c2yZjgbk13np0Z5MWEFQKSQNFBXd8T9r4k90YkJl",
 "access_token_secret": "jK9QOmn5Vbbmfg2ANT6KgfmKRqV8ThXVQ1G6qQg8BCejvp"
 },
 "collection_set": {
 "id": "3989a5f99e41487aaef698680537c3f5"
 }
}

	The routing key will be harvest.start.<social media platform>.<type>. For example,
harvest.start.flickr.flickr_photo.

	id: A globally unique identifier for the harvest, assigned by the requester.

	type: Identifies the type of harvest, including the social media platform. The
harvester can use this to map to the appropriate api calls.

	seeds: A list of seeds to harvest. Each seed is represented by a map containing id, token and (optionally) uid. Note
that some harvest types may not have seeds.

	options: A name/value map containing additional options for the harvest. The contents of the map
are specific to the type of harvest. (That is, the seeds for a flickr photo are going to be
different than the seeds for a twitter user timeline.)

	credentials: All credentials that are necessary to access the social media platform.
Credentials is a name/value map; the contents are specific to a social media platform.

	path: The base path for the collection.

Web resource harvest start message

Harvesters will extract urls from the harvested social media content and
publish a web resource harvest start message. This message is similar to
other harvest start messages, with the differences noted below. Example:

{
 "id": "flickr:45",
 "parent_id": "sfmui:45",
 "type": "web",
 "path": "/sfm-data/collections/3989a5f99e41487aaef698680537c3f5/6980fac666c54322a2ebdbcb2a9510f5",
 "seeds": [
 {
 "id": "3724fd97e85345ee84f5175eee09748d",
 "token": "http://www.gwu.edu/"
 },
 {
 "id": "aba6033aafce4fbabd846026ca47f13e",
 "token": "http://library.gwu.edu/"
 }
],
 "collection_set": {
 "id": "3989a5f99e41487aaef698680537c3f5"
 }
}

	The routing key will be harvest.start.web.

	parent_id: The id of the harvest from which the urls were extracted.

Harvest stop message

Harvest stop messages tell a harvester perform a stream harvest to stop. Example:

{
 "id": "sfmui:45"
}

	The routing key will be harvest.stop.<social media platform>.<type>. For example,
harvest.stop.twitter.filter.

Harvest status message

Harvest status messages allow a harvester to provide information on the harvests
it performs. Example:

{
 "id": "sfmui:45"
 "status": "completed success",
 "date_started": "2015-07-28T11:17:36.640044",
 "date_ended": "2015-07-28T11:17:42.539470",
 "infos": []
 "warnings": [],
 "errors": [],
 "stats": {
 "2016-05-20": {
 "photos": 12,
 },
 "2016-05-21": {
 "photos": 19,
 },
 },
 "token_updates": {
 "a36fe186fbfa47a89dbb0551e1f0f181": "j.littman"
 },
 "uids": {
 "ab0a4d9369324901a890ec85f00194ac": "671366249@N03"
 },
 "warcs": {
 "count": 3
 "bytes": 345234242
 }
}

	The routing key will be harvest.status.<social media platform>.<type>. For example,
harvest.status.flickr.flickr_photo.

	status: Valid values are completed success, completed failure, or running.

	infos, warnings, and errors: Lists of messages. A message should be an object
(i.e., dictionary) containing a code and message entry. Codes should be consistent
to allow message consumers to identify types of messages.

	stats: A count of items that are harvested by date. Items should be a human-understandable
labels (plural and lower-cased). Stats is optional for in progress statuses, but required for final statuses.

	token_updates: A map of uids to tokens for which a token change was detected while harvesting.
For example, for Twitter a token update would be provided whenever a user’s screen name
changes.

	uids: A map of tokens to uids for which a uid was identified while harvesting at not
provided in the harvest start message. For example, for Flickr a uid would be provided
containing the NSID for a username.

	warcs.`count`: The total number of WARCs created during this harvest.

	warcs.`bytes`: The total number of bytes of the WARCs created during this harvest.

Warc created message

Warc created message allow a harvester to provide information on the warcs that are
created during a harvest. Example:

{
 "warc": {
 "path": "/sfm-data/collections/3989a5f99e41487aaef698680537c3f5/6980fac666c54322a2ebdbcb2a9510f5/2015/07/28/11/harvest_id-2015-07-28T11:17:36Z.warc.gz",,
 "sha1": "7512e1c227c29332172118f0b79b2ca75cbe8979",
 "bytes": 26146,
 "id": "aba6033aafce4fbabd846026ca47f13e",
 "date_created": "2015-07-28T11:17:36.640178"
 },
 "collection_set": {
 "id": "3989a5f99e41487aaef698680537c3f5"
 },
 "harvest": {
 "id": "98ddaa6e8c1f4b44aaca95bc46d3d6ac",
 "type": "flickr_user"
 }
}

	The routing key will be warc_created.

	Each warc created message will be for a single warc.

Exporting social media content

Exporting is the process of extracting social media content from WARCs and writing
to export files. The exported content may be a subset or derivate of the original
content. A number of different export formats will be supported.

Background information

	A requester is an application that requests that an export be performed. A
requester may also want to monitor the status of an export. In the current
architecture, the SFM UI serves the role of requester.

	Depending on the nature of the export, a single or multiple files may be produced.

Flow

The following is the flow for an export:

	Requester publishes an export start message.

	Upon receiving the export start message, an exporter:
	Makes calls to the SFM REST API to determine the WARC files from which to export.

	Limits the content is specified by the export start message.

	Writes to export files.

	Upon completing the export, the exporter publishes an export status message
with the status of completed success or completed failure.

Export start message

Export start messages specify the requests for an export. Example:

{
 "id": "f3ddcbfc5d6b43139d04d680d278852e",
 "type": "flickr_user",
 "collection": {
 "id": "005b131f5f854402afa2b08a4b7ba960"
 },
 "path": "/sfm-data/exports/45",
 "format": "csv",
 "dedupe": true,
 "item_date_start": "2015-07-28T11:17:36.640178",
 "item_date_end": "2016-07-28T11:17:36.640178",
 "harvest_date_start": "2015-07-28T11:17:36.640178",
 "harvest_date_end": "2016-07-28T11:17:36.640178"
}

Another example:

{
 "id": "f3ddcbfc5d6b43139d04d680d278852e",
 "type": "flickr_user",
 "seeds": [
 {
 "id": "48722ac6154241f592fd74da775b7ab7",
 "uid": "23972344@N05"
 },
 {
 "id": "3ce76759a3ee40b894562a35359dfa54",
 "uid": "85779209@N08"
 }
],
 "path": "/sfm-data/exports/45",
 "format": "json"
}

	The routing key will be export.start.<social media platform>.<type>. For example,
export.start.flickr.flickr_user.

	id: A globally unique identifier for the harvest, assigned by the requester.

	type: Identifies the type of export, including the social media platform. The
export can use this to map to the appropriate export procedure.

	seeds: A list of seeds to export. Each seed is represented by a map containing id and uid.

	collection: A map containing the id of the collection to export.

	Each export start message must have a seeds or collection but not both.

	path: A directory into which the export files should be placed. The directory may not exist.

	format: A code for the format of the export. (Available formats may change.)

	dedupe: If true, duplicate social media content should be removed.

	item_date_start and item_date_end: The date of social media content should be within this range.

	harvest_date_start and harvest_date_end: The harvest date of social media content should be within this range.

Export status message

Export status messages allow an exporter to provide information on the exports
it performs. Example:

{
 "id": "f3ddcbfc5d6b43139d04d680d278852e"
 "status": "completed success",
 "date_started": "2015-07-28T11:17:36.640044",
 "date_ended": "2015-07-28T11:17:42.539470",
 "infos": []
 "warnings": [],
 "errors": [],
}

	The routing key will be export.status.<social media platform>.<type>. For example,
export.status.flickr.flickr_user.

	status: Valid values are completed success or completed failure.

	infos, warnings, and errors: Lists of messages. A message should be an object
(i.e., dictionary) containing a code and message entry. Codes should be consistent
to allow message consumers to identify types of messages.

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	sfm 1.1.0 documentation

Index

 Copyright 2015, The George Washington University Libraries.
 Created using Sphinx 1.3.5.

 _images/pick_dashboard.png
manage dashboards

Pashboard Fiter 2 asnboards
Twitter

Weibo

_images/visualize.png
N KIDANQ > o= owow s

_images/export_page.png
Social Feed Manager Collection Sets Credentials Exports Welcome, justinlittman~

Collection Sets / 2016 Election / Democratic party twitter timelines / Export

1d: 8bab871312c7436196e1ec04cd03a376
Requested: June 10, 2016, 12:14 p.m.
Status: Success

Export type: twitter_user_timeline
Format: csv

Deduplicate: False

Item start date: None

Item end date: None

Harvest start date: None

Harvest end date: None

Files.

Filename Size

8bab871312c7436196e1ec04cd03a376.csv 2.8MB

_images/search_user_mention.png

_images/seeds.png
Seeds

Token Uid Active
SenateDems 73238146 Yes
HouseDemocrats 43963249 Yes
TheDemocrats 14377605 Yes

AddSeed | Bulk Add Seeds

_images/top_hashtags_viz.png
9% This visualization is linked to a saved search: Tweet list

L Top 10 hashtags
5 5 ®Count
metrics
O v-axs comt m
+ Add metrics.
buckets
O x-axs hashtags.raw: Descencing € 2°
¥ Add sub-buckets
B
8
15
0
5
IpWAGIS ofif6 webaching IPOWACTS gwi fpwacls Elecon20is IDCCTS PythonTutor SaveThoWed
hashtags.raw: Descending

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_images/export.png

_images/on.png

_images/kibana.png
I N an a Discover ~ Visualize Dashboard Seftings © Last24 hours

> Ll Top 10 hashtags
350 > ® Count

300
250

200

Count

150

100

50

8
2
[
i
z

0

ImWithHer
Trump2016
NeverTrump
AmericaFirst
Nevertillary
Trump

MakeAmericaGreatAgain
Hi

hashtags.raw: Descending

_images/options.png
& Incremental
Only harvest new items.

@ Media
Perform web harvests of media (e.g., images) embedded in tweets.

@ Web resources

Perform web harvests of resources (e.g., web pages) linked in tweets.

Schedule*

Every week

End date

If blank, will continue until stopped.

_images/search_text.png
textarchiving|

_images/dashboard.png
I KIbana =~ == oo o

_images/results.png
screen_name

Available Fields a
@timestamp

@version

oreated_at

TweetlistD 190 hits
January 1st 2016, 00:00:00.000 - December 31st 2016, 23:5:59.989 — by week

B
€ w
8

2

ol I_-_I__I._l_ = ST

160101 2016020 20160031 20160H30 20160531 2060690 20160731 0160831 160900 20161031 20161100
@timestamp per week
~
Time soreen name toxt

» June 7th 2016, 15:51:57.000 justin_littman Hey @documentnow. See Gkwelle &am
on social media research ethics.

; Kinder-kurlanda's https://t.co/Ruw9a3vihe for a perspective

» June 7th 2016, 15:50:21.000 justin_littman Research documentation (for researchers) = provenance metadata (for archivists)

» June 7th 2016, 15:47:21.000 justin_littman “In order to advance social media research as an evolving new field, control over data quality

_images/edit.png

_images/viz.png
2016 Election

Web resources in last month Tweets in last month
600k
15k
400k
10k
s 200k
o o
May 15 May22 May29 Juns May 15 May22 May29 Juns

Al Lastyear | Last month | Last week Al Lastyear | Last month | Last week

_images/collection_set.png
Social Feed Manager ~ Collection Sets ~ Credentials Exports Welcome, justinlittman -

Collection Sets / 2016 Election

2016 Election

This is a collection of social media related to the 2016 United States presidential campaign. It was

started on June 1, 2016. Id: 65a3192dfc24839ad7867ba28fc762f

Group: justinlittman Created: June 1, 2016, 8:44 a.m.

Stats:

o tweets: 2021785
* web resources: 33266

Collections.

Name Harvest type Seeds On/off
Republican party twitter timelines Twitter user timeline 3 seeds on
Republican candidate twitter timelines Twitter user timeline 13 seeds on
Candidate twitter filter Twitter filter 1 seed on
Democratic party twitter timelines Twitter user timeline 3 seeds on
Democratic candidates user timelines Twitter user timeline 4seeds on
Commentator twitter timelines Twitter user timeline 30 seeds on

Add Collection

_images/filter.png
manage saved searches

Saved Search Filter 2saved searches

Tweet list

Weibo list

_images/no_results.png
No results found ©®

_images/single_result.png
Time sereen_name text

~ June 7th 2016, 15:51:57.000 justin_littman Hey @documentnow. See @kwelle & Kinder-kurlanda's https://t.co/Ruw9a3vihe for a perspective
on social media research ethics.

Link to /loastash-2016.06.07/tweet/740270089644056600
Table Isow

@timestanp @ @ (D June 7th 2016, 15:51:57.000

aversion aam1
id @ @ M 740270089644056600
_index @ logstash-2016.06.07
_score o

—type @Qm tweet

Createdat @ @D Tue Jun 07 19:51:57 +0000 2016

hashtags aam
host. @@ 26cezifazes3
id @ @ M 740,270,089,644,056,448

screennane @ @ M justin_littman

sm_type @Qm tweet

text @ @ M Hey @documentnow. See @kwelle & Kinder-Kurlanda's https://t.co/Ruwda3vlhp for a perspective on social media research
ethics.

urls @ @ M http://d1.acm.org/citation. cfm?doid=2908131.2908172

user_id @ Q@ [@ 481186914

user_mentions @ @ 0 documentnow, kwelle

_images/next_harvest.png
Next harvest at June 1

_images/date_picker.png
Discover Visualze Dashboard Settings

Today Yesterday
This week Day before yesterday
“This month ‘This day last week
This year Previous week
Thedaysofer Previous month
Weektodate Previous year

Month to date
Year to date

Last 15 minutes.
Last 30 minutes.
Last 1 hour
Last 4 hours
Last 12 hours
Last 24 hours
Last 7 days

Last 30 days
Last 60 days
Last 90 days
Last 6 months
Last 1 year
Last 2 years
Last 5 years

CAuto-refresh @ Last 15 minutes

_images/excel.png
@ Excel File Edit View Insert Format Tools Data Window $ Help 0%

)

W) 95% @M} Fri1:15PM _Littman, Justin

LN] 8bab871312c7436196e1ec04cd03a376.csv
CEHOE®S X0 & - 28 @B & ox © @
| @ Home | Layout | Tables | Charts | SmartArt | Formuiss | Data | Review |
o o Agnment Nompar fomat cote
E/ L B - [caroriGosy) [+[12 [+]|As] A~ abe | Z9 wrapText v [General B Normal Bad . %ﬂ i
o »| E c
e Pcenry B[I U] || (&AL verge - (&|r| % > |[$R[&) condional| Good R et Delete Format
w = S| created at 5
A | B [¢ [b | E [F [G [H | [[[k] L[M [N [O | P o [R [s [T T[]
rested_st_Jwitter 16 _ screen_namfollowers_co riends_cou retweet_cou hashtags _ n_reply_fo_twiter_u_coordnates text il ull_expandui2 __ ui_expanded
2 [2016:0601(7.378E+17 TheDemocra 508058 1103 59 http://twitter.com/TheDe RT @AfAmD: https://t.cof. http://theatin.tc/102KYG]
3 |2016-05-31: 7.3778+17 TheDemocra 508058 1103 186 http://twitter.com/TheDe Stand with D https://t.co/. http://bit.ly/IWVhZNP
4 _|2016-05-31% 7.3774E+17 TheDemocra 508058 1103 143, http://twitter.com/TheDe Democrats a https://t.co/| http://nyti.ms/1UfaxHF
5 |2016-053117.3771€417 TheDemocra 508058 1103 285 hetp://twitter.com/TheDe The only reat https://t.co/! https://amp.twimg.com/v/067f7384-b45a-481b-9f05-5f5f5e43a27
6 |2016-05-3117.3769E+17 TheDemocra 508058 1103 231 http://twitter.com/TheDe Donald Trump, Release your tax returns! Sincerely, America https://t.co/wPajasNSzH
7 |2016-053117.3767€+17 TheDemocra 508058 1103 86 /twitter.com/TheDe Texas voter | https://t.co/: http://wapo.st/1ZalhUw
8 |2016-05-3117.37656+17 TheDemocra 508058 1103 155 /twitter.com/TheDe 5% unemployment rate and less than 10% uninsured rate has us feeling like: https://t.co/ECVKG1VMQz
"5 (201605301 77326017 TheDemorra 500058 1103 16108 owite.com/Thebe RT @POTUS:Tris Memoria Dy, hope you'ljon me i acts of remembrance. The debt we owe our falle heroesis one we can never
10 |2016-05-30 1 7.3729E+17 TheDemocra 508058 1103 299 MemorialDay2016 ftwitter.com/TheDe 0¥$20Y4, V42074, 674267+, #MemorialDay2016 https://t.co/723esFaNS8.
11 |2016-05-29 1 7.3699E+17 TheDemocra 508058 1103 652 /twitter.com/TheDe Veterans anc https://t.co/! https://amp.twimg.com/v/6e23f496-90c0-4a1d-8464-5234713597e8.
12 |2016-05-29 1 7.3696E+17 TheDemocra 508058 1103 620 /twitter.com/TheDe Don't miss tF https://t.co/" https://amp.twimg.com/v/c7387e8e-2026-4cbd-b3a5-3caf50722bef
13 |2016-05-29 1 7.3693E+17 TheDemocra 508058 1103 164 /twitter.com/TheDe Lots wrong w https://t.co/. http://bit.ly/1P4uAVV
14 |2016-05-28 % 7.3669E+17 TheDemocra 508058 1103 236 http://twitter.com/TheDe So why won't Trump do it? https://t.co/[RWOnrEmxP
15 |2016-05-28 1 7.3661E+17 TheDemocra 508058 1103 881 http://twitter.com/TheDe Trump thinks women who have abortions deserve "punishment.” RT if you're voting for Democrats. https://t.o/J0LZCVIV2S
16 |2016-05-28 1 7.3657E+17 TheDemocra 508058 1103 535 http://twitter.com/TheDe This. On repe https://t.co/ https://amp.twimg.com/v/ac850980-3c44-440c-bb86-50a28209423d
17 |2016-05-27: 7.363E+17 TheDemocra 508058 1103 93 FridayFeeling. http://twitter.com/TheDe #FridayFeeling https://t.co/wRgcjMdhFu
18 |2016-05-27 % 7.3629E+17 TheDemocra 508058 1103 184 hetp://twitter.com/TheDe We can't hav https://t.co/: http://bit ly/25aNXjB

28 1 7016.05.97 17 2676F+17 Thehermcre SORNSR ina 7o v e

_images/search_hashtag.png

_images/collection_types.png
Add Collection +

Add Twitter search
Add Twitter filter

Add Twitter user timeline
Add Twitter sample

Add Flickr user

Add Weibo timeline

_images/twitter_dashboard.png
Count

Count

Tweet rate s %

5 ®Count

10

20160220 20160630 20161031
@timestamp per week

~
Top 10 urls s %

4

3

B lI

B .------
e3Eioh

5 ®Count

§g§gs 2883
£8248352%8¢%
IEEES RS
§5¢ TEEER
LR 1 !
H g
uris.raw: Descending

Count

Tweet list

Time

May 5th 2016, 15:12:31.000

April 26th 2016, 08:

Aprl 215t 2016, 14:04:24.000

Top 10 hashtags

E

justin_ittman

justin_ittman

justin_ittman

justin_ittman

5 ®Count

0 I
o N ——

°zee

cae

g

)
2
3

ipwaci

webarchiving
IPCWACH

inccis

Pythonfutor
SaveTheen

hashtags.raw: Descending
~

Why | just threw away gobs of @SocialFeedMgr code (or another try at harvesting the Twitter
‘Streaming API to WARC): hitps://.co/NFrpXbaDnU

RT @docker: Reproducible Research: Citing your execution env using @Docker and a DO
hittps://t.co/SADCNZESAU via @SoftwareSaved https:/

*High tolerance for repetiive tasks & attention to detailis necessary. Previous imaging
‘experience not necessary." hitps:/.co/BADGKSF10S

@jean_baver at @AULIbrary: Humanities *research structured by technology” but many.
researchers don't realize t.

s %

_images/harvests.png
Harvests
(15 0f 5)

Type
Web
Twitter user timeline
Twitter user timeline
Web

Twitter user timeline

Date requested

June 8, 2016, 9:09 a.m.
June 8, 2016, 9:09 a.m.
June 1,2016, 9:09 a.m.
June 1,2016, 8:46 a.m.

June 1,2016, 8:45 a.m.

Status
Success
Success
Success
Requested

Success

Messages
0 messages
0 messages
0 messages
0 messages

0 messages

_images/discover.png
I Kibana = == = ==

